@@ -196,14 +196,13 @@ read_aarch64_ctx (CORE_ADDR ctx_addr, enum bfd_endian byte_order,
/* Given CACHE, use the trad_frame* functions to restore the FPSIMD
registers from a signal frame.
- VREG_NUM is the number of the V register being restored, OFFSET is the
- address containing the register value, BYTE_ORDER is the endianness and
- HAS_SVE tells us if we have a valid SVE context or not. */
+ FPSIMD_CONTEXT is the address of the signal frame context containing FPSIMD
+ data. */
static void
-aarch64_linux_restore_vreg (struct trad_frame_cache *cache, int num_regs,
- int vreg_num, CORE_ADDR offset,
- enum bfd_endian byte_order, bool has_sve)
+aarch64_linux_restore_vregs (struct gdbarch *gdbarch,
+ struct trad_frame_cache *cache,
+ CORE_ADDR fpsimd_context)
{
/* WARNING: SIMD state is laid out in memory in target-endian format.
@@ -215,11 +214,22 @@ aarch64_linux_restore_vreg (struct trad_frame_cache *cache, int num_regs,
2 - If the target is little endian, then SIMD state is little endian, so
no byteswap is needed. */
- if (byte_order == BFD_ENDIAN_BIG)
+ enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
+ int num_regs = gdbarch_num_regs (gdbarch);
+ aarch64_gdbarch_tdep *tdep = gdbarch_tdep<aarch64_gdbarch_tdep> (gdbarch);
+
+ for (int i = 0; i < 32; i++)
{
+ CORE_ADDR offset = (fpsimd_context + AARCH64_FPSIMD_V0_OFFSET
+ + (i * AARCH64_FPSIMD_VREG_SIZE));
+
gdb_byte buf[V_REGISTER_SIZE];
- if (target_read_memory (offset, buf, V_REGISTER_SIZE) != 0)
+ /* Read the contents of the V register. */
+ if (target_read_memory (offset, buf, V_REGISTER_SIZE))
+ error (_("Failed to read fpsimd register from signal context."));
+
+ if (byte_order == BFD_ENDIAN_BIG)
{
size_t size = V_REGISTER_SIZE/2;
@@ -234,50 +244,66 @@ aarch64_linux_restore_vreg (struct trad_frame_cache *cache, int num_regs,
store_unsigned_integer (buf + size , size, BFD_ENDIAN_LITTLE, u64);
/* Now we can store the correct bytes for the V register. */
- trad_frame_set_reg_value_bytes (cache, AARCH64_V0_REGNUM + vreg_num,
+ trad_frame_set_reg_value_bytes (cache, AARCH64_V0_REGNUM + i,
{buf, V_REGISTER_SIZE});
trad_frame_set_reg_value_bytes (cache,
num_regs + AARCH64_Q0_REGNUM
- + vreg_num, {buf, Q_REGISTER_SIZE});
+ + i, {buf, Q_REGISTER_SIZE});
trad_frame_set_reg_value_bytes (cache,
num_regs + AARCH64_D0_REGNUM
- + vreg_num, {buf, D_REGISTER_SIZE});
+ + i, {buf, D_REGISTER_SIZE});
trad_frame_set_reg_value_bytes (cache,
num_regs + AARCH64_S0_REGNUM
- + vreg_num, {buf, S_REGISTER_SIZE});
+ + i, {buf, S_REGISTER_SIZE});
trad_frame_set_reg_value_bytes (cache,
num_regs + AARCH64_H0_REGNUM
- + vreg_num, {buf, H_REGISTER_SIZE});
+ + i, {buf, H_REGISTER_SIZE});
trad_frame_set_reg_value_bytes (cache,
num_regs + AARCH64_B0_REGNUM
- + vreg_num, {buf, B_REGISTER_SIZE});
+ + i, {buf, B_REGISTER_SIZE});
- if (has_sve)
+ if (tdep->has_sve ())
trad_frame_set_reg_value_bytes (cache,
num_regs + AARCH64_SVE_V0_REGNUM
- + vreg_num, {buf, V_REGISTER_SIZE});
+ + i, {buf, V_REGISTER_SIZE});
}
- return;
- }
+ else
+ {
+ /* Little endian, just point at the address containing the register
+ value. */
+ trad_frame_set_reg_addr (cache, AARCH64_V0_REGNUM + i, offset);
+ trad_frame_set_reg_addr (cache, num_regs + AARCH64_Q0_REGNUM + i,
+ offset);
+ trad_frame_set_reg_addr (cache, num_regs + AARCH64_D0_REGNUM + i,
+ offset);
+ trad_frame_set_reg_addr (cache, num_regs + AARCH64_S0_REGNUM + i,
+ offset);
+ trad_frame_set_reg_addr (cache, num_regs + AARCH64_H0_REGNUM + i,
+ offset);
+ trad_frame_set_reg_addr (cache, num_regs + AARCH64_B0_REGNUM + i,
+ offset);
- /* Little endian, just point at the address containing the register
- value. */
- trad_frame_set_reg_addr (cache, AARCH64_V0_REGNUM + vreg_num, offset);
- trad_frame_set_reg_addr (cache, num_regs + AARCH64_Q0_REGNUM + vreg_num,
- offset);
- trad_frame_set_reg_addr (cache, num_regs + AARCH64_D0_REGNUM + vreg_num,
- offset);
- trad_frame_set_reg_addr (cache, num_regs + AARCH64_S0_REGNUM + vreg_num,
- offset);
- trad_frame_set_reg_addr (cache, num_regs + AARCH64_H0_REGNUM + vreg_num,
- offset);
- trad_frame_set_reg_addr (cache, num_regs + AARCH64_B0_REGNUM + vreg_num,
- offset);
-
- if (has_sve)
- trad_frame_set_reg_addr (cache, num_regs + AARCH64_SVE_V0_REGNUM
- + vreg_num, offset);
+ if (tdep->has_sve ())
+ trad_frame_set_reg_addr (cache, num_regs + AARCH64_SVE_V0_REGNUM
+ + i, offset);
+ }
+ if (tdep->has_sve ())
+ {
+ /* If SVE is supported for this target, zero out the Z
+ registers then copy the first 16 bytes of each of the V
+ registers to the associated Z register. Otherwise the Z
+ registers will contain uninitialized data. */
+ std::vector<gdb_byte> z_buffer (tdep->vq * 16);
+
+ /* We have already handled the endianness swap above, so we don't need
+ to worry about it here. */
+ memcpy (z_buffer.data (), buf, V_REGISTER_SIZE);
+ trad_frame_set_reg_value_bytes (cache,
+ AARCH64_SVE_Z0_REGNUM + i,
+ z_buffer);
+ }
+ }
}
/* Implement the "init" method of struct tramp_frame. */
@@ -432,16 +458,7 @@ aarch64_linux_sigframe_init (const struct tramp_frame *self,
/* If there was no SVE section then set up the V registers. */
if (sve_regs == 0)
- {
- for (int i = 0; i < 32; i++)
- {
- CORE_ADDR offset = (fpsimd + AARCH64_FPSIMD_V0_OFFSET
- + (i * AARCH64_FPSIMD_VREG_SIZE));
-
- aarch64_linux_restore_vreg (this_cache, num_regs, i, offset,
- byte_order, tdep->has_sve ());
- }
- }
+ aarch64_linux_restore_vregs (gdbarch, this_cache, fpsimd);
}
trad_frame_set_id (this_cache, frame_id_build (sp, func));