@@ -384,4 +384,15 @@
#define __DECL_SIMD_acospif32x
#define __DECL_SIMD_acospif64x
#define __DECL_SIMD_acospif128x
+
+#define __DECL_SIMD_asinpi
+#define __DECL_SIMD_asinpif
+#define __DECL_SIMD_asinpil
+#define __DECL_SIMD_asinpif16
+#define __DECL_SIMD_asinpif32
+#define __DECL_SIMD_asinpif64
+#define __DECL_SIMD_asinpif128
+#define __DECL_SIMD_asinpif32x
+#define __DECL_SIMD_asinpif64x
+#define __DECL_SIMD_asinpif128x
#endif
@@ -71,6 +71,7 @@ __MATHCALL (acospi,, (_Mdouble_ __x));
__MATHCALL_VEC (acospi,, (_Mdouble_ __x));
/* Arc sine of X, divided by pi. */
__MATHCALL (asinpi,, (_Mdouble_ __x));
+__MATHCALL_VEC (asinpi,, (_Mdouble_ __x));
/* Arc tangent of X, divided by pi. */
__MATHCALL (atanpi,, (_Mdouble_ __x));
/* Arc tangent of Y/X, divided by pi. */
@@ -3,6 +3,7 @@ libmvec-supported-funcs = acos \
acospi \
asin \
asinh \
+ asinpi \
atan \
atanh \
atan2 \
@@ -163,5 +163,10 @@ libmvec {
_ZGVnN4v_acospif;
_ZGVsMxv_acospi;
_ZGVsMxv_acospif;
+ _ZGVnN2v_asinpi;
+ _ZGVnN2v_asinpif;
+ _ZGVnN4v_asinpif;
+ _ZGVsMxv_asinpi;
+ _ZGVsMxv_asinpif;
}
}
@@ -22,6 +22,7 @@ libmvec_hidden_proto (V_NAME_F1(acosh));
libmvec_hidden_proto (V_NAME_F1(acospi));
libmvec_hidden_proto (V_NAME_F1(asin));
libmvec_hidden_proto (V_NAME_F1(asinh));
+libmvec_hidden_proto (V_NAME_F1(asinpi));
libmvec_hidden_proto (V_NAME_F1(atan));
libmvec_hidden_proto (V_NAME_F1(atanh));
libmvec_hidden_proto (V_NAME_F1(cbrt));
new file mode 100644
@@ -0,0 +1,109 @@
+/* Double-Precision vector (Advanced SIMD) inverse sinpi function
+
+ Copyright (C) 2025 Free Software Foundation, Inc.
+ This file is part of the GNU C Library.
+
+ The GNU C Library is free software; you can redistribute it and/or
+ modify it under the terms of the GNU Lesser General Public
+ License as published by the Free Software Foundation; either
+ version 2.1 of the License, or (at your option) any later version.
+
+ The GNU C Library is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ Lesser General Public License for more details.
+
+ You should have received a copy of the GNU Lesser General Public
+ License along with the GNU C Library; if not, see
+ <https://www.gnu.org/licenses/>. */
+
+#include "v_math.h"
+
+static const struct data
+{
+ float64x2_t c0, c2, c4, c6, c8, c10;
+ float64x2_t pi_over_2, inv_pi;
+ uint64x2_t abs_mask;
+ double c1, c3, c5, c7, c9, c11;
+} data = {
+ /* Polynomial approximation of (asin(sqrt(x)) - sqrt(x)) / (x * sqrt(x))
+ on [ 0x1p-106, 0x1p-2 ], relative error: 0x1.c3d8e169p-57. */
+ .c0 = V2 (0x1.555555555554ep-3), .c1 = 0x1.3333333337233p-4,
+ .c2 = V2 (0x1.6db6db67f6d9fp-5), .c3 = 0x1.f1c71fbd29fbbp-6,
+ .c4 = V2 (0x1.6e8b264d467d6p-6), .c5 = 0x1.1c5997c357e9dp-6,
+ .c6 = V2 (0x1.c86a22cd9389dp-7), .c7 = 0x1.856073c22ebbep-7,
+ .c8 = V2 (0x1.fd1151acb6bedp-8), .c9 = 0x1.087182f799c1dp-6,
+ .c10 = V2 (-0x1.6602748120927p-7), .c11 = 0x1.cfa0dd1f9478p-6,
+ .pi_over_2 = V2 (0x1.921fb54442d18p+0), .abs_mask = V2 (0x7fffffffffffffff),
+ .inv_pi = V2 (0x1.45f306dc9c883p-2),
+};
+
+/* Double-precision implementation of vector asinpi(x).
+
+ For |x| in [0, 0.5], use an order 11 polynomial P such that the final
+ approximation is an odd polynomial: asin(x) ~ x + x^3 P(x^2).
+ asinpi(x) = asin(x) * 1/pi.
+
+ The largest observed error in this region is 1.63 ulps,
+ _ZGVnN2v_asinpi (0x1.9125919fa617p-19) got 0x1.fec183497ea53p-21
+ want 0x1.fec183497ea51p-21.
+
+ For |x| in [0.5, 1.0], use same approximation with a change of variable
+
+ asin(x) = pi/2 - (y + y * z * P(z)), with z = (1-x)/2 and y = sqrt(z).
+
+ The largest observed error in this region is 3.04 ulps,
+ _ZGVnN2v_asinpi (0x1.0479b7bd98553p-1) got 0x1.5beebec797326p-3
+ want 0x1.5beebec797329p-3. */
+
+float64x2_t VPCS_ATTR V_NAME_D1 (asinpi) (float64x2_t x)
+{
+ const struct data *d = ptr_barrier (&data);
+ float64x2_t ax = vabsq_f64 (x);
+
+ uint64x2_t a_lt_half = vcaltq_f64 (x, v_f64 (0.5));
+
+ /* Evaluate polynomial Q(x) = y + y * z * P(z) with
+ z = x ^ 2 and y = |x| , if |x| < 0.5
+ z = (1 - |x|) / 2 and y = sqrt(z), if |x| >= 0.5. */
+ float64x2_t z2 = vbslq_f64 (a_lt_half, vmulq_f64 (x, x),
+ vfmsq_n_f64 (v_f64 (0.5), ax, 0.5));
+ float64x2_t z = vbslq_f64 (a_lt_half, ax, vsqrtq_f64 (z2));
+
+ /* Use a single polynomial approximation P for both intervals. */
+ float64x2_t z4 = vmulq_f64 (z2, z2);
+ float64x2_t z8 = vmulq_f64 (z4, z4);
+ float64x2_t z16 = vmulq_f64 (z8, z8);
+
+ /* order-11 Estrin. */
+ float64x2_t c13 = vld1q_f64 (&d->c1);
+ float64x2_t c57 = vld1q_f64 (&d->c5);
+ float64x2_t c911 = vld1q_f64 (&d->c9);
+
+ float64x2_t p01 = vfmaq_laneq_f64 (d->c0, z2, c13, 0);
+ float64x2_t p23 = vfmaq_laneq_f64 (d->c2, z2, c13, 1);
+ float64x2_t p03 = vfmaq_f64 (p01, z4, p23);
+
+ float64x2_t p45 = vfmaq_laneq_f64 (d->c4, z2, c57, 0);
+ float64x2_t p67 = vfmaq_laneq_f64 (d->c6, z2, c57, 1);
+ float64x2_t p47 = vfmaq_f64 (p45, z4, p67);
+
+ float64x2_t p89 = vfmaq_laneq_f64 (d->c8, z2, c911, 0);
+ float64x2_t p1011 = vfmaq_laneq_f64 (d->c10, z2, c911, 1);
+ float64x2_t p811 = vfmaq_f64 (p89, z4, p1011);
+
+ float64x2_t p07 = vfmaq_f64 (p03, z8, p47);
+ float64x2_t p = vfmaq_f64 (p07, z16, p811);
+
+ /* Finalize polynomial: z + z * z2 * P(z2). */
+ p = vfmaq_f64 (z, vmulq_f64 (z, z2), p);
+
+ /* asin(|x|) = Q(|x|) , for |x| < 0.5
+ = pi/2 - 2 Q(|x|), for |x| >= 0.5. */
+ float64x2_t y = vbslq_f64 (a_lt_half, p, vfmsq_n_f64 (d->pi_over_2, p, 2.0));
+ /* asinpi(|x|) = asin(|x|) /pi. */
+ y = vmulq_f64 (y, d->inv_pi);
+
+ /* Copy sign. */
+ return vbslq_f64 (d->abs_mask, y, x);
+}
new file mode 100644
@@ -0,0 +1,107 @@
+/* Double-Precision vector (SVE) inverse sinpi function
+
+ Copyright (C) 2025 Free Software Foundation, Inc.
+ This file is part of the GNU C Library.
+
+ The GNU C Library is free software; you can redistribute it and/or
+ modify it under the terms of the GNU Lesser General Public
+ License as published by the Free Software Foundation; either
+ version 2.1 of the License, or (at your option) any later version.
+
+ The GNU C Library is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ Lesser General Public License for more details.
+
+ You should have received a copy of the GNU Lesser General Public
+ License along with the GNU C Library; if not, see
+ <https://www.gnu.org/licenses/>. */
+
+#include "sv_math.h"
+
+static const struct data
+{
+ float64_t c1, c3, c5, c7, c9, c11;
+ float64_t c0, c2, c4, c6, c8, c10;
+ float64_t pi_over_2, inv_pi;
+} data = {
+ /* Polynomial approximation of (asin(sqrt(x)) - sqrt(x)) / (x * sqrt(x))
+ on [ 0x1p-106, 0x1p-2 ], relative error: 0x1.c3d8e169p-57. */
+ .c0 = 0x1.555555555554ep-3, .c1 = 0x1.3333333337233p-4,
+ .c2 = 0x1.6db6db67f6d9fp-5, .c3 = 0x1.f1c71fbd29fbbp-6,
+ .c4 = 0x1.6e8b264d467d6p-6, .c5 = 0x1.1c5997c357e9dp-6,
+ .c6 = 0x1.c86a22cd9389dp-7, .c7 = 0x1.856073c22ebbep-7,
+ .c8 = 0x1.fd1151acb6bedp-8, .c9 = 0x1.087182f799c1dp-6,
+ .c10 = -0x1.6602748120927p-7, .c11 = 0x1.cfa0dd1f9478p-6,
+ .pi_over_2 = 0x1.921fb54442d18p+0, .inv_pi = 0x1.45f306dc9c883p-2,
+};
+
+/* Double-precision SVE implementation of vector asinpi(x).
+
+ For |x| in [0, 0.5], use an order 11 polynomial P such that the final
+ approximation is an odd polynomial: asin(x) ~ x + x^3 P(x^2).
+
+ The largest observed error in this region is 1.32 ulp:
+ _ZGVsMxv_asinpi (0x1.fc12356dbdefbp-2) got 0x1.5272e9658ba66p-3
+ want 0x1.5272e9658ba64p-3
+
+ For |x| in [0.5, 1.0], use same approximation with a change of variable:
+ asin(x) = pi/2 - (y + y * z * P(z)), with z = (1-x)/2 and y = sqrt(z).
+
+ The largest observed error in this region is 3.48 ulp:
+ _ZGVsMxv_asinpi (0x1.03da0c2295424p-1) got 0x1.5b02b3dcafaefp-3
+ want 0x1.5b02b3dcafaf2p-3. */
+svfloat64_t SV_NAME_D1 (asinpi) (svfloat64_t x, const svbool_t pg)
+{
+ const struct data *d = ptr_barrier (&data);
+ svbool_t ptrue = svptrue_b64 ();
+
+ svuint64_t sign = svand_x (pg, svreinterpret_u64 (x), 0x8000000000000000);
+ svfloat64_t ax = svabs_x (pg, x);
+ svbool_t a_ge_half = svacge (pg, x, 0.5);
+
+ /* Evaluate polynomial Q(x) = y + y * z * P(z) with
+ z = x ^ 2 and y = |x| , if |x| < 0.5
+ z = (1 - |x|) / 2 and y = sqrt(z), if |x| >= 0.5. */
+ svfloat64_t z2 = svsel (a_ge_half, svmls_x (pg, sv_f64 (0.5), ax, 0.5),
+ svmul_x (ptrue, x, x));
+ svfloat64_t z = svsqrt_m (ax, a_ge_half, z2);
+
+ /* Use a single polynomial approximation P for both intervals. */
+ svfloat64_t z3 = svmul_x (pg, z2, z);
+ svfloat64_t z4 = svmul_x (pg, z2, z2);
+ svfloat64_t z8 = svmul_x (pg, z4, z4);
+
+ svfloat64_t c13 = svld1rq (ptrue, &d->c1);
+ svfloat64_t c57 = svld1rq (ptrue, &d->c5);
+ svfloat64_t c911 = svld1rq (ptrue, &d->c9);
+
+ /* Order-11 Estrin scheme. */
+ svfloat64_t p01 = svmla_lane (sv_f64 (d->c0), z2, c13, 0);
+ svfloat64_t p23 = svmla_lane (sv_f64 (d->c2), z2, c13, 1);
+ svfloat64_t p03 = svmla_x (pg, p01, z4, p23);
+
+ svfloat64_t p45 = svmla_lane (sv_f64 (d->c4), z2, c57, 0);
+ svfloat64_t p67 = svmla_lane (sv_f64 (d->c6), z2, c57, 1);
+ svfloat64_t p47 = svmla_x (pg, p45, z4, p67);
+
+ svfloat64_t p89 = svmla_lane (sv_f64 (d->c8), z2, c911, 0);
+ svfloat64_t p1011 = svmla_lane (sv_f64 (d->c10), z2, c911, 1);
+ svfloat64_t p811 = svmla_x (pg, p89, z4, p1011);
+
+ svfloat64_t p411 = svmla_x (pg, p47, z8, p811);
+ svfloat64_t p = svmla_x (pg, p03, z8, p411);
+
+ /* Finalize polynomial: z + z3 * P(z2). */
+ p = svmla_x (pg, z, z3, p);
+
+ /* asin(|x|) = Q(|x|) , for |x| < 0.5
+ = pi/2 - 2 Q(|x|), for |x| >= 0.5. */
+ svfloat64_t y = svmad_m (a_ge_half, p, sv_f64 (-2.0), d->pi_over_2);
+
+ /* Reinsert the sign from the argument. */
+ svfloat64_t inv_pi = svreinterpret_f64 (
+ svorr_x (pg, svreinterpret_u64 (sv_f64 (d->inv_pi)), sign));
+
+ return svmul_x (pg, y, inv_pi);
+}
new file mode 100644
@@ -0,0 +1,95 @@
+/* Single-Precision vector (Advanced SIMD) inverse sinpi function
+
+ Copyright (C) 2025 Free Software Foundation, Inc.
+ This file is part of the GNU C Library.
+
+ The GNU C Library is free software; you can redistribute it and/or
+ modify it under the terms of the GNU Lesser General Public
+ License as published by the Free Software Foundation; either
+ version 2.1 of the License, or (at your option) any later version.
+
+ The GNU C Library is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ Lesser General Public License for more details.
+
+ You should have received a copy of the GNU Lesser General Public
+ License along with the GNU C Library; if not, see
+ <https://www.gnu.org/licenses/>. */
+
+#include "v_math.h"
+
+static const struct data
+{
+ float32x4_t c0, c2, c4, inv_pi;
+ float c1, c3, c5, null;
+} data = {
+ /* Coefficients of polynomial P such that asin(x)/pi~ x/pi + x^3 * poly(x^2)
+ on [ 0x1p-126 0x1p-2 ]. rel error: 0x1.ef9f94b1p-33. Generated using
+ iterative approach for minimisation of relative error in Sollya file. */
+ .c0 = V4 (0x1.b2995ep-5f), .c1 = 0x1.8724ep-6f,
+ .c2 = V4 (0x1.d1301ep-7f), .c3 = 0x1.446d3cp-7f,
+ .c4 = V4 (0x1.654848p-8f), .c5 = 0x1.5fdaa8p-7f,
+ .inv_pi = V4 (0x1.45f306p-2f),
+};
+
+#define AbsMask 0x7fffffff
+
+/* Single-precision implementation of vector asinpi(x).
+
+ For |x| < 0.5, use order 5 polynomial P such that the final
+ approximation is an odd polynomial: asinpif(x) ~ x/pi + x^3 P(x^2).
+
+ The largest observed error in this region is 1.68 ulps,
+ _ZGVnN4v_asinpif (0x1.86e514p-2) got 0x1.fea8c8p-4 want 0x1.fea8ccp-4.
+
+ For |x| in [0.5, 1.0], use same approximation with a change of variable
+
+ asin(x) = pi/2 - (y + y * z * P(z)), with z = (1-x)/2 and y = sqrt(z).
+
+ The largest observed error in this region is 3.49 ulps,
+ _ZGVnN4v_asinpif(0x1.0d93fep-1) got 0x1.697aap-3 want 0x1.697a9ap-3. */
+float32x4_t VPCS_ATTR NOINLINE V_NAME_F1 (asinpi) (float32x4_t x)
+{
+ const struct data *d = ptr_barrier (&data);
+
+ uint32x4_t ix = vreinterpretq_u32_f32 (x);
+ uint32x4_t ia = vandq_u32 (ix, v_u32 (AbsMask));
+
+ float32x4_t ax = vreinterpretq_f32_u32 (ia);
+ uint32x4_t a_lt_half = vcaltq_f32 (x, v_f32 (0.5f));
+
+ /* Evaluate polynomial Q(x) = y/pi + y * z * P(z) with
+ z = x ^ 2 and y = |x| , if |x| < 0.5
+ z = (1 - |x|) / 2 and y = sqrt(z), if |x| >= 0.5. */
+ float32x4_t z2 = vbslq_f32 (a_lt_half, vmulq_f32 (x, x),
+ vfmsq_n_f32 (v_f32 (0.5f), ax, 0.5f));
+ float32x4_t z = vbslq_f32 (a_lt_half, ax, vsqrtq_f32 (z2));
+
+ /* Use a single polynomial approximation P for both intervals. */
+
+ /* Order-5 Estrin evaluation scheme. */
+ float32x4_t z4 = vmulq_f32 (z2, z2);
+ float32x4_t z8 = vmulq_f32 (z4, z4);
+ float32x4_t c135 = vld1q_f32 (&d->c1);
+ float32x4_t p01 = vfmaq_laneq_f32 (d->c0, z2, c135, 0);
+ float32x4_t p23 = vfmaq_laneq_f32 (d->c2, z2, c135, 1);
+ float32x4_t p03 = vfmaq_f32 (p01, z4, p23);
+ float32x4_t p45 = vfmaq_laneq_f32 (d->c4, z2, c135, 2);
+ float32x4_t p = vfmaq_f32 (p03, z8, p45);
+ /* Add 1/pi as final coeff. */
+ p = vfmaq_f32 (d->inv_pi, z2, p);
+
+ /* Finalize polynomial: z * P(z2). */
+ p = vmulq_f32 (z, p);
+
+ /* asinpi(|x|) = Q(|x|), for |x| < 0.5
+ = 1/2 - 2 Q(|x|), for |x| >= 0.5. */
+ float32x4_t y
+ = vbslq_f32 (a_lt_half, p, vfmsq_n_f32 (v_f32 (0.5f), p, 2.0f));
+
+ /* Copy sign. */
+ return vbslq_f32 (v_u32 (AbsMask), y, x);
+}
+libmvec_hidden_def (V_NAME_F1 (asinpi))
+HALF_WIDTH_ALIAS_F1 (asinpi)
\ No newline at end of file
new file mode 100644
@@ -0,0 +1,88 @@
+/* Single-Precision vector (SVE) inverse sinpi function
+
+ Copyright (C) 2025 Free Software Foundation, Inc.
+ This file is part of the GNU C Library.
+
+ The GNU C Library is free software; you can redistribute it and/or
+ modify it under the terms of the GNU Lesser General Public
+ License as published by the Free Software Foundation; either
+ version 2.1 of the License, or (at your option) any later version.
+
+ The GNU C Library is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ Lesser General Public License for more details.
+
+ You should have received a copy of the GNU Lesser General Public
+ License along with the GNU C Library; if not, see
+ <https://www.gnu.org/licenses/>. */
+
+#include "sv_math.h"
+
+static const struct data
+{
+ float32_t c1, c3, c5;
+ float32_t c0, c2, c4, inv_pi;
+} data = {
+ /* Polynomial approximation of (asin(sqrt(x)) - sqrt(x)) / (x * sqrt(x)) on
+ [ 0x1p-24 0x1p-2 ] order = 4 rel error: 0x1.00a23bbp-29 . */
+ .c0 = 0x1.b2995ep-5f, .c1 = 0x1.8724ep-6f, .c2 = 0x1.d1301ep-7f,
+ .c3 = 0x1.446d3cp-7f, .c4 = 0x1.654848p-8f, .c5 = 0x1.5fdaa8p-7f,
+ .inv_pi = 0x1.45f306p-2f,
+};
+
+/* Single-precision SVE implementation of vector asin(x).
+
+ For |x| in [0, 0.5], use order 5 polynomial P such that the final
+ approximation is an odd polynomial: asinpi(x) ~ x/pi + x^3 P(x^2).
+
+ The largest observed error in this region is 1.96 ulps:
+ _ZGVsMxv_asinpif (0x1.8e534ep-3) got 0x1.fe6ab4p-5
+ want 0x1.fe6ab8p-5.
+
+ For |x| in [0.5, 1.0], use same approximation with a change of variable
+
+ asinpi(x) = 1/2 - (y + y * z * P(z)), with z = (1-x)/2 and y = sqrt(z).
+
+ The largest observed error in this region is 3.46 ulps:
+ _ZGVsMxv_asinpif (0x1.0df892p-1) got 0x1.6a114cp-3
+ want 0x1.6a1146p-3. */
+svfloat32_t SV_NAME_F1 (asinpi) (svfloat32_t x, const svbool_t pg)
+{
+ const struct data *d = ptr_barrier (&data);
+ svbool_t ptrue = svptrue_b32 ();
+
+ svuint32_t sign = svand_x (pg, svreinterpret_u32 (x), 0x80000000);
+
+ svfloat32_t ax = svabs_x (pg, x);
+ svbool_t a_ge_half = svacge (pg, x, 0.5);
+
+ /* Evaluate polynomial Q(x) = y + y * z * P(z) with
+ z = x ^ 2 and y = |x| , if |x| < 0.5
+ z = (1 - |x|) / 2 and y = sqrt(z), if |x| >= 0.5. */
+ svfloat32_t z2 = svsel (a_ge_half, svmls_x (pg, sv_f32 (0.5), ax, 0.5),
+ svmul_x (pg, x, x));
+ svfloat32_t z = svsqrt_m (ax, a_ge_half, z2);
+
+ svfloat32_t z4 = svmul_x (ptrue, z2, z2);
+ svfloat32_t c135_two = svld1rq (ptrue, &d->c1);
+
+ /* Order-5 Pairwise Horner evaluation scheme. */
+ svfloat32_t p01 = svmla_lane (sv_f32 (d->c0), z2, c135_two, 0);
+ svfloat32_t p23 = svmla_lane (sv_f32 (d->c2), z2, c135_two, 1);
+ svfloat32_t p45 = svmla_lane (sv_f32 (d->c4), z2, c135_two, 2);
+
+ svfloat32_t p25 = svmla_x (pg, p23, z4, p45);
+ svfloat32_t p = svmla_x (pg, p01, z4, p25);
+
+ /* Add 1/pi as final coeff. */
+ p = svmla_x (pg, sv_f32 (d->inv_pi), z2, p);
+ p = svmul_x (pg, p, z);
+
+ /* asinpi(|x|) = Q(|x|), for |x| < 0.5
+ = 1/2 - 2 Q(|x|), for |x| >= 0.5. */
+ svfloat32_t y = svmsb_m (a_ge_half, p, sv_f32 (2.0), 0.5);
+
+ /* Reinsert sign from argument. */
+ return svreinterpret_f32 (sveor_x (pg, svreinterpret_u32 (y), sign));
+}
@@ -49,6 +49,10 @@
# define __DECL_SIMD_asinh __DECL_SIMD_aarch64
# undef __DECL_SIMD_asinhf
# define __DECL_SIMD_asinhf __DECL_SIMD_aarch64
+# undef __DECL_SIMD_asinpi
+# define __DECL_SIMD_asinpi __DECL_SIMD_aarch64
+# undef __DECL_SIMD_asinpif
+# define __DECL_SIMD_asinpif __DECL_SIMD_aarch64
# undef __DECL_SIMD_atan
# define __DECL_SIMD_atan __DECL_SIMD_aarch64
# undef __DECL_SIMD_atanf
@@ -185,6 +189,7 @@ __vpcs __f32x4_t _ZGVnN4v_acoshf (__f32x4_t);
__vpcs __f32x4_t _ZGVnN4v_acospif (__f32x4_t);
__vpcs __f32x4_t _ZGVnN4v_asinf (__f32x4_t);
__vpcs __f32x4_t _ZGVnN4v_asinhf (__f32x4_t);
+__vpcs __f32x4_t _ZGVnN4v_asinpif (__f32x4_t);
__vpcs __f32x4_t _ZGVnN4v_atanf (__f32x4_t);
__vpcs __f32x4_t _ZGVnN4v_atanhf (__f32x4_t);
__vpcs __f32x4_t _ZGVnN4v_cbrtf (__f32x4_t);
@@ -217,6 +222,7 @@ __vpcs __f64x2_t _ZGVnN2v_acosh (__f64x2_t);
__vpcs __f64x2_t _ZGVnN2v_acospi (__f64x2_t);
__vpcs __f64x2_t _ZGVnN2v_asin (__f64x2_t);
__vpcs __f64x2_t _ZGVnN2v_asinh (__f64x2_t);
+__vpcs __f64x2_t _ZGVnN2v_asinpi (__f64x2_t);
__vpcs __f64x2_t _ZGVnN2v_atan (__f64x2_t);
__vpcs __f64x2_t _ZGVnN2v_atanh (__f64x2_t);
__vpcs __f64x2_t _ZGVnN2v_cbrt (__f64x2_t);
@@ -254,6 +260,7 @@ __sv_f32_t _ZGVsMxv_acoshf (__sv_f32_t, __sv_bool_t);
__sv_f32_t _ZGVsMxv_acospif (__sv_f32_t, __sv_bool_t);
__sv_f32_t _ZGVsMxv_asinf (__sv_f32_t, __sv_bool_t);
__sv_f32_t _ZGVsMxv_asinhf (__sv_f32_t, __sv_bool_t);
+__sv_f32_t _ZGVsMxv_asinpif (__sv_f32_t, __sv_bool_t);
__sv_f32_t _ZGVsMxv_atanf (__sv_f32_t, __sv_bool_t);
__sv_f32_t _ZGVsMxv_atanhf (__sv_f32_t, __sv_bool_t);
__sv_f32_t _ZGVsMxv_cbrtf (__sv_f32_t, __sv_bool_t);
@@ -286,6 +293,7 @@ __sv_f64_t _ZGVsMxv_acosh (__sv_f64_t, __sv_bool_t);
__sv_f64_t _ZGVsMxv_acospi (__sv_f64_t, __sv_bool_t);
__sv_f64_t _ZGVsMxv_asin (__sv_f64_t, __sv_bool_t);
__sv_f64_t _ZGVsMxv_asinh (__sv_f64_t, __sv_bool_t);
+__sv_f64_t _ZGVsMxv_asinpi (__sv_f64_t, __sv_bool_t);
__sv_f64_t _ZGVsMxv_atan (__sv_f64_t, __sv_bool_t);
__sv_f64_t _ZGVsMxv_atanh (__sv_f64_t, __sv_bool_t);
__sv_f64_t _ZGVsMxv_cbrt (__sv_f64_t, __sv_bool_t);
@@ -28,6 +28,7 @@ VPCS_VECTOR_WRAPPER (acosh_advsimd, _ZGVnN2v_acosh)
VPCS_VECTOR_WRAPPER (acospi_advsimd, _ZGVnN2v_acospi)
VPCS_VECTOR_WRAPPER (asin_advsimd, _ZGVnN2v_asin)
VPCS_VECTOR_WRAPPER (asinh_advsimd, _ZGVnN2v_asinh)
+VPCS_VECTOR_WRAPPER (asinpi_advsimd, _ZGVnN2v_asinpi)
VPCS_VECTOR_WRAPPER (atan_advsimd, _ZGVnN2v_atan)
VPCS_VECTOR_WRAPPER (atanh_advsimd, _ZGVnN2v_atanh)
VPCS_VECTOR_WRAPPER_ff (atan2_advsimd, _ZGVnN2vv_atan2)
@@ -47,6 +47,7 @@ SVE_VECTOR_WRAPPER (acosh_sve, _ZGVsMxv_acosh)
SVE_VECTOR_WRAPPER (acospi_sve, _ZGVsMxv_acospi)
SVE_VECTOR_WRAPPER (asin_sve, _ZGVsMxv_asin)
SVE_VECTOR_WRAPPER (asinh_sve, _ZGVsMxv_asinh)
+SVE_VECTOR_WRAPPER (asinpi_sve, _ZGVsMxv_asinpi)
SVE_VECTOR_WRAPPER (atan_sve, _ZGVsMxv_atan)
SVE_VECTOR_WRAPPER (atanh_sve, _ZGVsMxv_atanh)
SVE_VECTOR_WRAPPER_ff (atan2_sve, _ZGVsMxvv_atan2)
@@ -28,6 +28,7 @@ VPCS_VECTOR_WRAPPER (acoshf_advsimd, _ZGVnN4v_acoshf)
VPCS_VECTOR_WRAPPER (acospif_advsimd, _ZGVnN4v_acospif)
VPCS_VECTOR_WRAPPER (asinf_advsimd, _ZGVnN4v_asinf)
VPCS_VECTOR_WRAPPER (asinhf_advsimd, _ZGVnN4v_asinhf)
+VPCS_VECTOR_WRAPPER (asinpif_advsimd, _ZGVnN4v_asinpif)
VPCS_VECTOR_WRAPPER (atanf_advsimd, _ZGVnN4v_atanf)
VPCS_VECTOR_WRAPPER (atanhf_advsimd, _ZGVnN4v_atanhf)
VPCS_VECTOR_WRAPPER_ff (atan2f_advsimd, _ZGVnN4vv_atan2f)
@@ -47,6 +47,7 @@ SVE_VECTOR_WRAPPER (acoshf_sve, _ZGVsMxv_acoshf)
SVE_VECTOR_WRAPPER (acospif_sve, _ZGVsMxv_acospif)
SVE_VECTOR_WRAPPER (asinf_sve, _ZGVsMxv_asinf)
SVE_VECTOR_WRAPPER (asinhf_sve, _ZGVsMxv_asinhf)
+SVE_VECTOR_WRAPPER (asinpif_sve, _ZGVsMxv_asinpif)
SVE_VECTOR_WRAPPER (atanf_sve, _ZGVsMxv_atanf)
SVE_VECTOR_WRAPPER (atanhf_sve, _ZGVsMxv_atanhf)
SVE_VECTOR_WRAPPER_ff (atan2f_sve, _ZGVsMxvv_atan2f)
@@ -150,5 +150,9 @@ GLIBC_2.41 _ZGVsMxv_tanpi F
GLIBC_2.41 _ZGVsMxv_tanpif F
GLIBC_2.42 _ZGVnN2v_acospi F
GLIBC_2.42 _ZGVnN2v_acospif F
+GLIBC_2.42 _ZGVnN2v_asinpi F
+GLIBC_2.42 _ZGVnN2v_asinpif F
GLIBC_2.42 _ZGVnN4v_acospi F
+GLIBC_2.42 _ZGVnN4v_asinpi F
GLIBC_2.42 _ZGVsMxv_acospi F
+GLIBC_2.42 _ZGVsMxv_asinpi F