@@ -94,6 +94,7 @@ bench-math := \
tan \
tanh \
tgamma \
+ tgammaf \
trunc \
truncf \
y0 \
@@ -14,6 +14,7 @@
#include <errno.h>
#include <math.h>
+#include <stddef.h>
#include <math_private.h>
#include <math-svid-compat.h>
#include <libm-alias-float.h>
@@ -22,8 +23,7 @@
float
__tgammaf(float x)
{
- int local_signgam;
- float y = __ieee754_gammaf_r(x,&local_signgam);
+ float y = __ieee754_gammaf_r(x, NULL);
if(__glibc_unlikely (!isfinite (y) || y == 0)
&& (isfinite (x) || (isinf (x) && x < 0.0))
@@ -41,7 +41,7 @@ __tgammaf(float x)
/* tgammaf overflow */
return __kernel_standard_f(x, x, 140);
}
- return local_signgam < 0 ? - y : y;
+ return y;
}
libm_alias_float (__tgamma, tgamma)
#endif
@@ -1653,22 +1653,18 @@ ldouble: 3
Function: "tgamma":
double: 9
-float: 8
ldouble: 4
Function: "tgamma_downward":
double: 9
-float: 7
ldouble: 5
Function: "tgamma_towardzero":
double: 9
-float: 7
ldouble: 5
Function: "tgamma_upward":
double: 9
-float: 8
ldouble: 4
Function: "y0":
@@ -1410,22 +1410,18 @@ ldouble: 3
Function: "tgamma":
double: 9
-float: 8
ldouble: 4
Function: "tgamma_downward":
double: 9
-float: 7
ldouble: 5
Function: "tgamma_towardzero":
double: 9
-float: 7
ldouble: 5
Function: "tgamma_upward":
double: 9
-float: 8
ldouble: 4
Function: "y0":
@@ -1093,19 +1093,15 @@ float: 3
Function: "tgamma":
double: 9
-float: 9
Function: "tgamma_downward":
double: 9
-float: 9
Function: "tgamma_towardzero":
double: 9
-float: 8
Function: "tgamma_upward":
double: 9
-float: 9
Function: "y0":
double: 3
@@ -262,7 +262,6 @@ float: 2
Function: "tgamma":
double: 9
-float: 8
Function: "y0":
double: 3
@@ -1152,19 +1152,15 @@ float: 3
Function: "tgamma":
double: 9
-float: 8
Function: "tgamma_downward":
double: 9
-float: 7
Function: "tgamma_towardzero":
double: 9
-float: 7
Function: "tgamma_upward":
double: 9
-float: 8
Function: "y0":
double: 3
@@ -1061,19 +1061,15 @@ float: 3
Function: "tgamma":
double: 9
-float: 8
Function: "tgamma_downward":
double: 8
-float: 7
Function: "tgamma_towardzero":
double: 9
-float: 7
Function: "tgamma_upward":
double: 9
-float: 8
Function: "y0":
double: 3
@@ -1092,19 +1092,15 @@ float: 3
Function: "tgamma":
double: 9
-float: 8
Function: "tgamma_downward":
double: 5
-float: 5
Function: "tgamma_towardzero":
double: 5
-float: 4
Function: "tgamma_upward":
double: 4
-float: 4
Function: "y0":
double: 3
@@ -1181,20 +1181,16 @@ float: 3
Function: "tgamma":
double: 9
-float: 8
ldouble: 1
Function: "tgamma_downward":
double: 9
-float: 7
Function: "tgamma_towardzero":
double: 9
-float: 7
Function: "tgamma_upward":
double: 9
-float: 8
Function: "y0":
double: 3
@@ -1699,25 +1699,21 @@ ldouble: 4
Function: "tgamma":
double: 9
-float: 8
float128: 4
ldouble: 5
Function: "tgamma_downward":
double: 9
-float: 7
float128: 5
ldouble: 6
Function: "tgamma_towardzero":
double: 9
-float: 7
float128: 5
ldouble: 6
Function: "tgamma_upward":
double: 9
-float: 8
float128: 4
ldouble: 5
@@ -1701,25 +1701,21 @@ ldouble: 4
Function: "tgamma":
double: 9
-float: 8
float128: 4
ldouble: 5
Function: "tgamma_downward":
double: 9
-float: 7
float128: 5
ldouble: 6
Function: "tgamma_towardzero":
double: 9
-float: 7
float128: 5
ldouble: 6
Function: "tgamma_upward":
double: 8
-float: 8
float128: 4
ldouble: 5
@@ -1,44 +1 @@
-/* Compute a product of X, X+1, ..., with an error estimate.
- Copyright (C) 2013-2024 Free Software Foundation, Inc.
- This file is part of the GNU C Library.
-
- The GNU C Library is free software; you can redistribute it and/or
- modify it under the terms of the GNU Lesser General Public
- License as published by the Free Software Foundation; either
- version 2.1 of the License, or (at your option) any later version.
-
- The GNU C Library is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- Lesser General Public License for more details.
-
- You should have received a copy of the GNU Lesser General Public
- License along with the GNU C Library; if not, see
- <https://www.gnu.org/licenses/>. */
-
-#include <math.h>
-#include <math-narrow-eval.h>
-#include <math_private.h>
-#include <float.h>
-
-/* Compute the product of X + X_EPS, X + X_EPS + 1, ..., X + X_EPS + N
- - 1, in the form R * (1 + *EPS) where the return value R is an
- approximation to the product and *EPS is set to indicate the
- approximate error in the return value. X is such that all the
- values X + 1, ..., X + N - 1 are exactly representable, and X_EPS /
- X is small enough that factors quadratic in it can be
- neglected. */
-
-float
-__gamma_productf (float x, float x_eps, int n, float *eps)
-{
- double x_full = (double) x + (double) x_eps;
- double ret = x_full;
- for (int i = 1; i < n; i++)
- ret *= x_full + i;
-
- float fret = math_narrow_eval ((float) ret);
- *eps = (ret - fret) / fret;
-
- return fret;
-}
+/* Not needed. */
@@ -1,215 +1,150 @@
-/* Implementation of gamma function according to ISO C.
- Copyright (C) 1997-2024 Free Software Foundation, Inc.
- This file is part of the GNU C Library.
+/* Implementation of the gamma function for binary32.
- The GNU C Library is free software; you can redistribute it and/or
- modify it under the terms of the GNU Lesser General Public
- License as published by the Free Software Foundation; either
- version 2.1 of the License, or (at your option) any later version.
+Copyright (c) 2023-2024 Alexei Sibidanov.
- The GNU C Library is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- Lesser General Public License for more details.
+The original version of this file was copied from the CORE-MATH
+project (file src/binary32/tgamma/tgammaf.c, revision a48e352).
- You should have received a copy of the GNU Lesser General Public
- License along with the GNU C Library; if not, see
- <https://www.gnu.org/licenses/>. */
+Permission is hereby granted, free of charge, to any person obtaining a copy
+of this software and associated documentation files (the "Software"), to deal
+in the Software without restriction, including without limitation the rights
+to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+copies of the Software, and to permit persons to whom the Software is
+furnished to do so, subject to the following conditions:
-#include <math.h>
-#include <math-narrow-eval.h>
-#include <math_private.h>
-#include <fenv_private.h>
-#include <math-underflow.h>
-#include <float.h>
-#include <libm-alias-finite.h>
-
-/* Coefficients B_2k / 2k(2k-1) of x^-(2k-1) inside exp in Stirling's
- approximation to gamma function. */
+The above copyright notice and this permission notice shall be included in all
+copies or substantial portions of the Software.
-static const float gamma_coeff[] =
- {
- 0x1.555556p-4f,
- -0xb.60b61p-12f,
- 0x3.403404p-12f,
- };
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+SOFTWARE.
+ */
-#define NCOEFF (sizeof (gamma_coeff) / sizeof (gamma_coeff[0]))
+/* Changes with respect to the original CORE-MATH code:
+ - removed the dealing with errno
+ (this is done in the wrapper math/w_tgammaf_compat.c)
+ - usage of math_narrow_eval to deal with underflow/overflow
+ - deal with signgamp
+ */
-/* Return gamma (X), for positive X less than 42, in the form R *
- 2^(*EXP2_ADJ), where R is the return value and *EXP2_ADJ is set to
- avoid overflow or underflow in intermediate calculations. */
+#include <math.h>
+#include <float.h>
+#include <stdint.h>
+#include <stddef.h>
+#include <libm-alias-finite.h>
+#include <math-narrow-eval.h>
-static float
-gammaf_positive (float x, int *exp2_adj)
-{
- int local_signgam;
- if (x < 0.5f)
- {
- *exp2_adj = 0;
- return __ieee754_expf (__ieee754_lgammaf_r (x + 1, &local_signgam)) / x;
- }
- else if (x <= 1.5f)
- {
- *exp2_adj = 0;
- return __ieee754_expf (__ieee754_lgammaf_r (x, &local_signgam));
- }
- else if (x < 2.5f)
- {
- *exp2_adj = 0;
- float x_adj = x - 1;
- return (__ieee754_expf (__ieee754_lgammaf_r (x_adj, &local_signgam))
- * x_adj);
- }
- else
- {
- float eps = 0;
- float x_eps = 0;
- float x_adj = x;
- float prod = 1;
- if (x < 4.0f)
- {
- /* Adjust into the range for applying Stirling's
- approximation. */
- float n = ceilf (4.0f - x);
- x_adj = math_narrow_eval (x + n);
- x_eps = (x - (x_adj - n));
- prod = __gamma_productf (x_adj - n, x_eps, n, &eps);
- }
- /* The result is now gamma (X_ADJ + X_EPS) / (PROD * (1 + EPS)).
- Compute gamma (X_ADJ + X_EPS) using Stirling's approximation,
- starting by computing pow (X_ADJ, X_ADJ) with a power of 2
- factored out. */
- float exp_adj = -eps;
- float x_adj_int = roundf (x_adj);
- float x_adj_frac = x_adj - x_adj_int;
- int x_adj_log2;
- float x_adj_mant = __frexpf (x_adj, &x_adj_log2);
- if (x_adj_mant < M_SQRT1_2f)
- {
- x_adj_log2--;
- x_adj_mant *= 2.0f;
- }
- *exp2_adj = x_adj_log2 * (int) x_adj_int;
- float ret = (__ieee754_powf (x_adj_mant, x_adj)
- * __ieee754_exp2f (x_adj_log2 * x_adj_frac)
- * __ieee754_expf (-x_adj)
- * sqrtf (2 * M_PIf / x_adj)
- / prod);
- exp_adj += x_eps * __ieee754_logf (x_adj);
- float bsum = gamma_coeff[NCOEFF - 1];
- float x_adj2 = x_adj * x_adj;
- for (size_t i = 1; i <= NCOEFF - 1; i++)
- bsum = bsum / x_adj2 + gamma_coeff[NCOEFF - 1 - i];
- exp_adj += bsum / x_adj;
- return ret + ret * __expm1f (exp_adj);
- }
-}
+typedef union {float f; uint32_t u;} b32u32_u;
+typedef union {double f; uint64_t u;} b64u64_u;
float
__ieee754_gammaf_r (float x, int *signgamp)
{
- int32_t hx;
- float ret;
+ /* The wrapper in math/w_tgamma_template.c expects *signgamp to be set to a
+ non-negative value if the returned value is gamma(x), and to a negative
+ value if it is -gamma(x).
+ Since the code here directly computes gamma(x), we set it to 1.
+ */
+ if (signgamp != NULL)
+ *signgamp = 1;
- GET_FLOAT_WORD (hx, x);
+ /* List of exceptional cases. Each entry contains the 32-bit encoding u of x,
+ a binary32 approximation f of gamma(x), and a correction term df. */
+ static const struct {uint32_t u; float f, df;} tb[] = {
+ {0x27de86a9u, 0x1.268266p+47f, 0x1p22f}, // x = 0x1.bd0d52p-48
+ {0x27e05475u, 0x1.242422p+47f, 0x1p22f}, // x = 0x1.c0a8eap-48
+ {0xb63befb3u, -0x1.5cb6e4p+18f, 0x1p-7f}, // x = -0x1.77df66p-19
+ {0x3c7bb570u, 0x1.021d9p+6f, 0x1p-19f}, // x = 0x1.f76aep-7
+ {0x41e886d1u, 0x1.33136ap+98f, 0x1p73f}, // x = 0x1.d10da2p+4
+ {0xc067d177u, 0x1.f6850cp-3f, 0x1p-28f}, // x = -0x1.cfa2eep+1
+ {0xbd99da31u, -0x1.befe66p+3, -0x1p-22f}, // x = -0x1.33b462p-4
+ {0xbf54c45au, -0x1.a6b4ecp+2, +0x1p-23f}, // x = -0x1.a988b4p-1
+ {0x41ee77feu, 0x1.d3631cp+101, -0x1p-76f}, // x = 0x1.dceffcp+4
+ {0x3f843a64u, 0x1.f6c638p-1, 0x1p-26f}, // x = 0x1.0874c8p+0
+ };
- if (__glibc_unlikely ((hx & 0x7fffffff) == 0))
- {
- /* Return value for x == 0 is Inf with divide by zero exception. */
- *signgamp = 0;
- return 1.0 / x;
+ b32u32_u t = {.f = x};
+ uint32_t ax = t.u<<1;
+ if(__builtin_expect(ax>=(0xffu<<24), 0)){ /* x=NaN or +/-Inf */
+ if(ax==(0xffu<<24)){ /* x=+/-Inf */
+ if(t.u>>31){ /* x=-Inf */
+ return x / x; /* will raise the "Invalid operation" exception */
+ }
+ return x; /* x=+Inf */
}
- if (__builtin_expect (hx < 0, 0)
- && (uint32_t) hx < 0xff800000 && rintf (x) == x)
- {
- /* Return value for integer x < 0 is NaN with invalid exception. */
- *signgamp = 0;
- return (x - x) / (x - x);
+ return x + x; /* x=NaN, where x+x ensures the "Invalid operation"
+ exception is set if x is sNaN */
+ }
+ double z = x;
+ if(__builtin_expect(ax<0x6d000000u, 0)){ /* |x| < 0x1p-18 */
+ volatile double d = (0x1.fa658c23b1578p-1 - 0x1.d0a118f324b63p-1*z)*z - 0x1.2788cfc6fb619p-1;
+ double f = 1.0/z + d;
+ float r = f;
+ b64u64_u rt = {.f = f};
+ if(((rt.u+2)&0xfffffff) < 4){
+ for(unsigned i=0;i<sizeof(tb)/sizeof(tb[0]);i++)
+ if(t.u==tb[i].u) return tb[i].f + tb[i].df;
}
- if (__glibc_unlikely (hx == 0xff800000))
- {
- /* x == -Inf. According to ISO this is NaN. */
- *signgamp = 0;
- return x - x;
+ return r;
+ }
+ float fx = __builtin_floorf(x);
+ if(__builtin_expect(x >= 0x1.18522p+5f, 0)){
+ /* Overflow case. The original CORE-MATH code returns 0x1p127f * 0x1p127f,
+ but apparently some compilers replace this by +Inf. */
+ return math_narrow_eval (x * 0x1p127f);
+ }
+ /* compute k only after the overflow check, otherwise the case to integer
+ might overflow */
+ int k = fx;
+ if(__builtin_expect(fx==x, 0)){ /* x is integer */
+ if(x == 0.0f){
+ return 1.0f/x;
}
- if (__glibc_unlikely ((hx & 0x7f800000) == 0x7f800000))
- {
- /* Positive infinity (return positive infinity) or NaN (return
- NaN). */
- *signgamp = 0;
- return x + x;
+ if(x < 0.0f){
+ return 0.0f / 0.0f; /* should raise the "Invalid operation" exception */
}
+ double t0 = 1, x0 = 1;
+ for(int i=1; i<k; i++, x0 += 1.0) t0 *= x0;
+ return t0;
+ }
+ if(__builtin_expect(x<-42.0f, 0)){ /* negative non-integer */
+ /* For x < -42, x non-integer, |gamma(x)| < 2^-151. */
+ static const float sgn[2] = {0x1p-127f, -0x1p-127f};
+ /* Underflows always happens */
+ return math_narrow_eval (0x1p-127f * sgn[k&1]);
+ }
+ /* The array c[] stores a degree-15 polynomial approximation for gamma(x). */
+ static const double c[] =
+ {0x1.c9a76be577123p+0, 0x1.8f2754ddcf90dp+0, 0x1.0d1191949419bp+0, 0x1.e1f42cf0ae4a1p-2,
+ 0x1.82b358a3ab638p-3, 0x1.e1f2b30cd907bp-5, 0x1.240f6d4071bd8p-6, 0x1.1522c9f3cd012p-8,
+ 0x1.1fd0051a0525bp-10, 0x1.9808a8b96c37ep-13, 0x1.b3f78e01152b5p-15, 0x1.49c85a7e1fd04p-18,
+ 0x1.471ca49184475p-19, -0x1.368f0b7ed9e36p-23, 0x1.882222f9049efp-23, -0x1.a69ed2042842cp-25};
- if (x >= 36.0f)
- {
- /* Overflow. */
- *signgamp = 0;
- ret = math_narrow_eval (FLT_MAX * FLT_MAX);
- return ret;
- }
- else
- {
- SET_RESTORE_ROUNDF (FE_TONEAREST);
- if (x > 0.0f)
- {
- *signgamp = 0;
- int exp2_adj;
- float tret = gammaf_positive (x, &exp2_adj);
- ret = __scalbnf (tret, exp2_adj);
- }
- else if (x >= -FLT_EPSILON / 4.0f)
- {
- *signgamp = 0;
- ret = 1.0f / x;
- }
- else
- {
- float tx = truncf (x);
- *signgamp = (tx == 2.0f * truncf (tx / 2.0f)) ? -1 : 1;
- if (x <= -42.0f)
- /* Underflow. */
- ret = FLT_MIN * FLT_MIN;
- else
- {
- float frac = tx - x;
- if (frac > 0.5f)
- frac = 1.0f - frac;
- float sinpix = (frac <= 0.25f
- ? __sinf (M_PIf * frac)
- : __cosf (M_PIf * (0.5f - frac)));
- int exp2_adj;
- float tret = M_PIf / (-x * sinpix
- * gammaf_positive (-x, &exp2_adj));
- ret = __scalbnf (tret, -exp2_adj);
- math_check_force_underflow_nonneg (ret);
- }
- }
- ret = math_narrow_eval (ret);
- }
- if (isinf (ret) && x != 0)
- {
- if (*signgamp < 0)
- {
- ret = math_narrow_eval (-copysignf (FLT_MAX, ret) * FLT_MAX);
- ret = -ret;
- }
- else
- ret = math_narrow_eval (copysignf (FLT_MAX, ret) * FLT_MAX);
- return ret;
- }
- else if (ret == 0)
- {
- if (*signgamp < 0)
- {
- ret = math_narrow_eval (-copysignf (FLT_MIN, ret) * FLT_MIN);
- ret = -ret;
- }
- else
- ret = math_narrow_eval (copysignf (FLT_MIN, ret) * FLT_MIN);
- return ret;
+ double m = z - 0x1.7p+1, i = __builtin_roundeven(m), step = __builtin_copysign(1.0,i);
+ double d = m - i, d2 = d*d, d4 = d2*d2, d8 = d4*d4;
+ double f = (c[0] + d*c[1]) + d2*(c[2] + d*c[3]) + d4*((c[4] + d*c[5]) + d2*(c[6] + d*c[7]))
+ + d8*((c[8] + d*c[9]) + d2*(c[10] + d*c[11]) + d4*((c[12] + d*c[13]) + d2*(c[14] + d*c[15])));
+ int jm = __builtin_fabs(i);
+ double w = 1;
+ if(jm){
+ z -= 0.5 + step*0.5;
+ w = z;
+ for(int j=jm-1; j; j--) {z -= step; w *= z;}
+ }
+ if(i<=-0.5) w = 1/w;
+ f *= w;
+ b64u64_u rt = {.f = f};
+ float r = f;
+ /* Deal with exceptional cases. */
+ if(__builtin_expect(((rt.u+2)&0xfffffff) < 8, 0)){
+ for(unsigned j=0;j<sizeof(tb)/sizeof(tb[0]);j++) {
+ if(t.u==tb[j].u) return tb[j].f + tb[j].df;
}
- else
- return ret;
+ }
+ return r;
}
libm_alias_finite (__ieee754_gammaf_r, __gammaf_r)
@@ -1432,22 +1432,18 @@ ldouble: 3
Function: "tgamma":
double: 9
-float: 8
ldouble: 4
Function: "tgamma_downward":
double: 9
-float: 7
ldouble: 5
Function: "tgamma_towardzero":
double: 9
-float: 7
ldouble: 5
Function: "tgamma_upward":
double: 9
-float: 8
ldouble: 4
Function: "y0":
@@ -146,7 +146,6 @@ double: 1
Function: "tgamma":
double: 1
-float: 1
Function: "y0":
double: 2
@@ -1208,22 +1208,18 @@ float: 1
Function: "tgamma":
double: 3
-float: 9
ldouble: 9
Function: "tgamma_downward":
double: 3
-float: 9
ldouble: 9
Function: "tgamma_towardzero":
double: 3
-float: 9
ldouble: 9
Function: "tgamma_upward":
double: 2
-float: 9
ldouble: 9
Function: "y0":
@@ -257,7 +257,6 @@ float: 2
Function: "tgamma":
double: 5
-float: 4
Function: "y0":
double: 2
@@ -1156,19 +1156,15 @@ float: 3
Function: "tgamma":
double: 9
-float: 8
Function: "tgamma_downward":
double: 9
-float: 7
Function: "tgamma_towardzero":
double: 9
-float: 7
Function: "tgamma_upward":
double: 9
-float: 8
Function: "y0":
double: 3
@@ -1444,22 +1444,18 @@ ldouble: 3
Function: "tgamma":
double: 9
-float: 8
ldouble: 4
Function: "tgamma_downward":
double: 9
-float: 7
ldouble: 5
Function: "tgamma_towardzero":
double: 9
-float: 7
ldouble: 5
Function: "tgamma_upward":
double: 9
-float: 8
ldouble: 4
Function: "y0":
@@ -266,7 +266,6 @@ float: 2
Function: "tgamma":
double: 9
-float: 8
Function: "y0":
double: 3
@@ -1066,19 +1066,15 @@ float: 3
Function: "tgamma":
double: 9
-float: 8
Function: "tgamma_downward":
double: 9
-float: 9
Function: "tgamma_towardzero":
double: 9
-float: 8
Function: "tgamma_upward":
double: 9
-float: 8
Function: "y0":
double: 3
@@ -1064,19 +1064,15 @@ float: 3
Function: "tgamma":
double: 9
-float: 8
Function: "tgamma_downward":
double: 9
-float: 9
Function: "tgamma_towardzero":
double: 9
-float: 8
Function: "tgamma_upward":
double: 9
-float: 8
Function: "y0":
double: 3
@@ -1828,25 +1828,21 @@ ldouble: 6
Function: "tgamma":
double: 9
-float: 8
float128: 4
ldouble: 5
Function: "tgamma_downward":
double: 9
-float: 7
float128: 5
ldouble: 6
Function: "tgamma_towardzero":
double: 9
-float: 7
float128: 5
ldouble: 5
Function: "tgamma_upward":
double: 9
-float: 8
float128: 4
ldouble: 5
@@ -1560,22 +1560,18 @@ ldouble: 6
Function: "tgamma":
double: 9
-float: 8
ldouble: 5
Function: "tgamma_downward":
double: 9
-float: 7
ldouble: 5
Function: "tgamma_towardzero":
double: 9
-float: 7
ldouble: 5
Function: "tgamma_upward":
double: 9
-float: 8
ldouble: 4
Function: "y0":
@@ -1361,22 +1361,18 @@ ldouble: 3
Function: "tgamma":
double: 9
-float: 8
ldouble: 4
Function: "tgamma_downward":
double: 5
-float: 5
ldouble: 5
Function: "tgamma_towardzero":
double: 5
-float: 4
ldouble: 5
Function: "tgamma_upward":
double: 4
-float: 4
ldouble: 4
Function: "y0":
@@ -1431,22 +1431,18 @@ ldouble: 3
Function: "tgamma":
double: 9
-float: 8
ldouble: 4
Function: "tgamma_downward":
double: 9
-float: 7
ldouble: 5
Function: "tgamma_towardzero":
double: 9
-float: 7
ldouble: 5
Function: "tgamma_upward":
double: 8
-float: 8
ldouble: 4
Function: "y0":
@@ -1429,22 +1429,18 @@ ldouble: 3
Function: "tgamma":
double: 9
-float: 8
ldouble: 4
Function: "tgamma_downward":
double: 9
-float: 7
ldouble: 5
Function: "tgamma_towardzero":
double: 9
-float: 7
ldouble: 5
Function: "tgamma_upward":
double: 9
-float: 8
ldouble: 4
Function: "y0":
@@ -532,11 +532,9 @@ float: 2
Function: "tgamma":
double: 9
-float: 8
Function: "tgamma_towardzero":
double: 9
-float: 7
Function: "y0":
double: 3
@@ -1444,22 +1444,18 @@ ldouble: 3
Function: "tgamma":
double: 9
-float: 8
ldouble: 4
Function: "tgamma_downward":
double: 9
-float: 7
ldouble: 5
Function: "tgamma_towardzero":
double: 9
-float: 7
ldouble: 5
Function: "tgamma_upward":
double: 9
-float: 8
ldouble: 4
Function: "y0":
@@ -2263,25 +2263,21 @@ double: 1
Function: "tgamma":
double: 9
-float: 8
float128: 4
ldouble: 5
Function: "tgamma_downward":
double: 9
-float: 7
float128: 5
ldouble: 6
Function: "tgamma_towardzero":
double: 9
-float: 7
float128: 5
ldouble: 6
Function: "tgamma_upward":
double: 9
-float: 8
float128: 4
ldouble: 5