[v5,10/17] string: Improve generic memchr

Message ID 20220919195920.956393-11-adhemerval.zanella@linaro.org
State Superseded
Headers
Series Improve generic string routines |

Checks

Context Check Description
dj/TryBot-apply_patch success Patch applied to master at the time it was sent

Commit Message

Adhemerval Zanella Netto Sept. 19, 2022, 7:59 p.m. UTC
  New algorithm have the following key differences:

  - Reads first word unaligned and use string-maskoff function to
    remove unwanted data.  This strategy follow arch-specific
    optimization used on aarch64 and powerpc.

  - Use string-fz{b,i} and string-opthr functions.

Checked on x86_64-linux-gnu, i686-linux-gnu, powerpc-linux-gnu,
and powerpc64-linux-gnu by removing the arch-specific assembly
implementation and disabling multi-arch (it covers both LE and BE
for 64 and 32 bits).

Co-authored-by: Richard Henderson  <rth@twiddle.net>
---
 string/memchr.c                               | 168 +++++-------------
 .../powerpc32/power4/multiarch/memchr-ppc32.c |  14 +-
 .../powerpc64/multiarch/memchr-ppc64.c        |   9 +-
 3 files changed, 48 insertions(+), 143 deletions(-)
  

Comments

Noah Goldstein Jan. 5, 2023, 11:47 p.m. UTC | #1
On Mon, Sep 19, 2022 at 1:05 PM Adhemerval Zanella via Libc-alpha
<libc-alpha@sourceware.org> wrote:
>
> New algorithm have the following key differences:
>
>   - Reads first word unaligned and use string-maskoff function to
>     remove unwanted data.  This strategy follow arch-specific
>     optimization used on aarch64 and powerpc.
>
>   - Use string-fz{b,i} and string-opthr functions.
>
> Checked on x86_64-linux-gnu, i686-linux-gnu, powerpc-linux-gnu,
> and powerpc64-linux-gnu by removing the arch-specific assembly
> implementation and disabling multi-arch (it covers both LE and BE
> for 64 and 32 bits).
>
> Co-authored-by: Richard Henderson  <rth@twiddle.net>
> ---
>  string/memchr.c                               | 168 +++++-------------
>  .../powerpc32/power4/multiarch/memchr-ppc32.c |  14 +-
>  .../powerpc64/multiarch/memchr-ppc64.c        |   9 +-
>  3 files changed, 48 insertions(+), 143 deletions(-)
>
> diff --git a/string/memchr.c b/string/memchr.c
> index 422bcd0cd6..08d518b02d 100644
> --- a/string/memchr.c
> +++ b/string/memchr.c
> @@ -1,10 +1,6 @@
> -/* Copyright (C) 1991-2022 Free Software Foundation, Inc.
> +/* Scan memory for a character.  Generic version
> +   Copyright (C) 1991-2022 Free Software Foundation, Inc.
>     This file is part of the GNU C Library.
> -   Based on strlen implementation by Torbjorn Granlund (tege@sics.se),
> -   with help from Dan Sahlin (dan@sics.se) and
> -   commentary by Jim Blandy (jimb@ai.mit.edu);
> -   adaptation to memchr suggested by Dick Karpinski (dick@cca.ucsf.edu),
> -   and implemented by Roland McGrath (roland@ai.mit.edu).
>
>     The GNU C Library is free software; you can redistribute it and/or
>     modify it under the terms of the GNU Lesser General Public
> @@ -20,143 +16,65 @@
>     License along with the GNU C Library; if not, see
>     <https://www.gnu.org/licenses/>.  */
>
> -#ifndef _LIBC
> -# include <config.h>
> -#endif
> -
> +#include <intprops.h>
> +#include <string-fza.h>
> +#include <string-fzb.h>
> +#include <string-fzi.h>
> +#include <string-maskoff.h>
> +#include <string-opthr.h>
>  #include <string.h>
>
> -#include <stddef.h>
> +#undef memchr
>
> -#include <limits.h>
> -
> -#undef __memchr
> -#ifdef _LIBC
> -# undef memchr
> +#ifdef MEMCHR
> +# define __memchr MEMCHR
>  #endif
>
> -#ifndef weak_alias
> -# define __memchr memchr
> -#endif
> -
> -#ifndef MEMCHR
> -# define MEMCHR __memchr
> -#endif
> +static inline const char *
> +sadd (uintptr_t x, uintptr_t y)
> +{
> +  uintptr_t ret = INT_ADD_OVERFLOW (x, y) ? (uintptr_t)-1 : x + y;
> +  return (const char *)ret;
> +}
>
>  /* Search no more than N bytes of S for C.  */
>  void *
> -MEMCHR (void const *s, int c_in, size_t n)
> +__memchr (void const *s, int c_in, size_t n)
>  {
> -  /* On 32-bit hardware, choosing longword to be a 32-bit unsigned
> -     long instead of a 64-bit uintmax_t tends to give better
> -     performance.  On 64-bit hardware, unsigned long is generally 64
> -     bits already.  Change this typedef to experiment with
> -     performance.  */
> -  typedef unsigned long int longword;
> +  if (__glibc_unlikely (n == 0))
> +    return NULL;
>
> -  const unsigned char *char_ptr;
> -  const longword *longword_ptr;
> -  longword repeated_one;
> -  longword repeated_c;
> -  unsigned char c;
> +  uintptr_t s_int = (uintptr_t) s;
>
> -  c = (unsigned char) c_in;
> +  /* Set up a word, each of whose bytes is C.  */
> +  op_t repeated_c = repeat_bytes (c_in);
> +  op_t before_mask = create_mask (s_int);
>
> -  /* Handle the first few bytes by reading one byte at a time.
> -     Do this until CHAR_PTR is aligned on a longword boundary.  */
> -  for (char_ptr = (const unsigned char *) s;
> -       n > 0 && (size_t) char_ptr % sizeof (longword) != 0;
> -       --n, ++char_ptr)
> -    if (*char_ptr == c)
> -      return (void *) char_ptr;
> +  /* Compute the address of the last byte taking in consideration possible
> +     overflow.  */
> +  const char *lbyte = sadd (s_int, n - 1);

Do you need this? The comparison in the loop is == so letting it
overflow should be fine no?
>
> -  longword_ptr = (const longword *) char_ptr;
> +  /* Compute the address of the word containing the last byte. */
> +  const op_t *lword = word_containing (lbyte);
>
> -  /* All these elucidatory comments refer to 4-byte longwords,
> -     but the theory applies equally well to any size longwords.  */
> +  /* Read the first word, but munge it so that bytes before the array
> +     will not match goal.  */
> +  const op_t *word_ptr = word_containing (s);
> +  op_t word = (*word_ptr | before_mask) ^ (repeated_c & before_mask);

Likewise, prefer just shifting out the invalid comparisons on the first word.
>
> -  /* Compute auxiliary longword values:
> -     repeated_one is a value which has a 1 in every byte.
> -     repeated_c has c in every byte.  */
> -  repeated_one = 0x01010101;
> -  repeated_c = c | (c << 8);
> -  repeated_c |= repeated_c << 16;
> -  if (0xffffffffU < (longword) -1)
> +  while (has_eq (word, repeated_c) == 0)
>      {
> -      repeated_one |= repeated_one << 31 << 1;
> -      repeated_c |= repeated_c << 31 << 1;
> -      if (8 < sizeof (longword))
> -       {
> -         size_t i;
> -
> -         for (i = 64; i < sizeof (longword) * 8; i *= 2)
> -           {
> -             repeated_one |= repeated_one << i;
> -             repeated_c |= repeated_c << i;
> -           }
> -       }
> +      if (word_ptr == lword)
> +       return NULL;
> +      word = *++word_ptr;
>      }
>
> -  /* Instead of the traditional loop which tests each byte, we will test a
> -     longword at a time.  The tricky part is testing if *any of the four*
> -     bytes in the longword in question are equal to c.  We first use an xor
> -     with repeated_c.  This reduces the task to testing whether *any of the
> -     four* bytes in longword1 is zero.
> -
> -     We compute tmp =
> -       ((longword1 - repeated_one) & ~longword1) & (repeated_one << 7).
> -     That is, we perform the following operations:
> -       1. Subtract repeated_one.
> -       2. & ~longword1.
> -       3. & a mask consisting of 0x80 in every byte.
> -     Consider what happens in each byte:
> -       - If a byte of longword1 is zero, step 1 and 2 transform it into 0xff,
> -        and step 3 transforms it into 0x80.  A carry can also be propagated
> -        to more significant bytes.
> -       - If a byte of longword1 is nonzero, let its lowest 1 bit be at
> -        position k (0 <= k <= 7); so the lowest k bits are 0.  After step 1,
> -        the byte ends in a single bit of value 0 and k bits of value 1.
> -        After step 2, the result is just k bits of value 1: 2^k - 1.  After
> -        step 3, the result is 0.  And no carry is produced.
> -     So, if longword1 has only non-zero bytes, tmp is zero.
> -     Whereas if longword1 has a zero byte, call j the position of the least
> -     significant zero byte.  Then the result has a zero at positions 0, ...,
> -     j-1 and a 0x80 at position j.  We cannot predict the result at the more
> -     significant bytes (positions j+1..3), but it does not matter since we
> -     already have a non-zero bit at position 8*j+7.
> -
> -     So, the test whether any byte in longword1 is zero is equivalent to
> -     testing whether tmp is nonzero.  */
> -
> -  while (n >= sizeof (longword))
> -    {
> -      longword longword1 = *longword_ptr ^ repeated_c;
> -
> -      if ((((longword1 - repeated_one) & ~longword1)
> -          & (repeated_one << 7)) != 0)
> -       break;
> -      longword_ptr++;
> -      n -= sizeof (longword);
> -    }
> -
> -  char_ptr = (const unsigned char *) longword_ptr;
> -
> -  /* At this point, we know that either n < sizeof (longword), or one of the
> -     sizeof (longword) bytes starting at char_ptr is == c.  On little-endian
> -     machines, we could determine the first such byte without any further
> -     memory accesses, just by looking at the tmp result from the last loop
> -     iteration.  But this does not work on big-endian machines.  Choose code
> -     that works in both cases.  */
> -
> -  for (; n > 0; --n, ++char_ptr)
> -    {
> -      if (*char_ptr == c)
> -       return (void *) char_ptr;
> -    }
> -
> -  return NULL;
> +  /* We found a match, but it might be in a byte past the end
> +     of the array.  */
> +  char *ret = (char *) word_ptr + index_first_eq (word, repeated_c);
> +  return (ret <= lbyte) ? ret : NULL;
>  }
> -#ifdef weak_alias
> +#ifndef MEMCHR
>  weak_alias (__memchr, memchr)
> -#endif
>  libc_hidden_builtin_def (memchr)
> +#endif
> diff --git a/sysdeps/powerpc/powerpc32/power4/multiarch/memchr-ppc32.c b/sysdeps/powerpc/powerpc32/power4/multiarch/memchr-ppc32.c
> index fc69df54b3..02877d3c98 100644
> --- a/sysdeps/powerpc/powerpc32/power4/multiarch/memchr-ppc32.c
> +++ b/sysdeps/powerpc/powerpc32/power4/multiarch/memchr-ppc32.c
> @@ -18,17 +18,11 @@
>
>  #include <string.h>
>
> -#define MEMCHR  __memchr_ppc
> +extern __typeof (memchr) __memchr_ppc attribute_hidden;
>
> -#undef weak_alias
> -#define weak_alias(a, b)
> +#define MEMCHR  __memchr_ppc
> +#include <string/memchr.c>
>
>  #ifdef SHARED
> -# undef libc_hidden_builtin_def
> -# define libc_hidden_builtin_def(name) \
> -  __hidden_ver1(__memchr_ppc, __GI_memchr, __memchr_ppc);
> +__hidden_ver1(__memchr_ppc, __GI_memchr, __memchr_ppc);
>  #endif
> -
> -extern __typeof (memchr) __memchr_ppc attribute_hidden;
> -
> -#include <string/memchr.c>
> diff --git a/sysdeps/powerpc/powerpc64/multiarch/memchr-ppc64.c b/sysdeps/powerpc/powerpc64/multiarch/memchr-ppc64.c
> index 3c966f4403..15beca787b 100644
> --- a/sysdeps/powerpc/powerpc64/multiarch/memchr-ppc64.c
> +++ b/sysdeps/powerpc/powerpc64/multiarch/memchr-ppc64.c
> @@ -18,14 +18,7 @@
>
>  #include <string.h>
>
> -#define MEMCHR  __memchr_ppc
> -
> -#undef weak_alias
> -#define weak_alias(a, b)
> -
> -# undef libc_hidden_builtin_def
> -# define libc_hidden_builtin_def(name)
> -
>  extern __typeof (memchr) __memchr_ppc attribute_hidden;
>
> +#define MEMCHR  __memchr_ppc
>  #include <string/memchr.c>
> --
> 2.34.1
>
  
Noah Goldstein Jan. 5, 2023, 11:49 p.m. UTC | #2
On Mon, Sep 19, 2022 at 1:05 PM Adhemerval Zanella via Libc-alpha
<libc-alpha@sourceware.org> wrote:
>
> New algorithm have the following key differences:
>
>   - Reads first word unaligned and use string-maskoff function to
>     remove unwanted data.  This strategy follow arch-specific
>     optimization used on aarch64 and powerpc.
>
>   - Use string-fz{b,i} and string-opthr functions.
>
> Checked on x86_64-linux-gnu, i686-linux-gnu, powerpc-linux-gnu,
> and powerpc64-linux-gnu by removing the arch-specific assembly
> implementation and disabling multi-arch (it covers both LE and BE
> for 64 and 32 bits).
>
> Co-authored-by: Richard Henderson  <rth@twiddle.net>
> ---
>  string/memchr.c                               | 168 +++++-------------
>  .../powerpc32/power4/multiarch/memchr-ppc32.c |  14 +-
>  .../powerpc64/multiarch/memchr-ppc64.c        |   9 +-
>  3 files changed, 48 insertions(+), 143 deletions(-)
>
> diff --git a/string/memchr.c b/string/memchr.c
> index 422bcd0cd6..08d518b02d 100644
> --- a/string/memchr.c
> +++ b/string/memchr.c
> @@ -1,10 +1,6 @@
> -/* Copyright (C) 1991-2022 Free Software Foundation, Inc.
> +/* Scan memory for a character.  Generic version
> +   Copyright (C) 1991-2022 Free Software Foundation, Inc.
>     This file is part of the GNU C Library.
> -   Based on strlen implementation by Torbjorn Granlund (tege@sics.se),
> -   with help from Dan Sahlin (dan@sics.se) and
> -   commentary by Jim Blandy (jimb@ai.mit.edu);
> -   adaptation to memchr suggested by Dick Karpinski (dick@cca.ucsf.edu),
> -   and implemented by Roland McGrath (roland@ai.mit.edu).
>
>     The GNU C Library is free software; you can redistribute it and/or
>     modify it under the terms of the GNU Lesser General Public
> @@ -20,143 +16,65 @@
>     License along with the GNU C Library; if not, see
>     <https://www.gnu.org/licenses/>.  */
>
> -#ifndef _LIBC
> -# include <config.h>
> -#endif
> -
> +#include <intprops.h>
> +#include <string-fza.h>
> +#include <string-fzb.h>
> +#include <string-fzi.h>
> +#include <string-maskoff.h>
> +#include <string-opthr.h>
>  #include <string.h>
>
> -#include <stddef.h>
> +#undef memchr
>
> -#include <limits.h>
> -
> -#undef __memchr
> -#ifdef _LIBC
> -# undef memchr
> +#ifdef MEMCHR
> +# define __memchr MEMCHR
>  #endif
>
> -#ifndef weak_alias
> -# define __memchr memchr
> -#endif
> -
> -#ifndef MEMCHR
> -# define MEMCHR __memchr
> -#endif
> +static inline const char *
> +sadd (uintptr_t x, uintptr_t y)
> +{
> +  uintptr_t ret = INT_ADD_OVERFLOW (x, y) ? (uintptr_t)-1 : x + y;
> +  return (const char *)ret;
> +}
>
>  /* Search no more than N bytes of S for C.  */
>  void *
> -MEMCHR (void const *s, int c_in, size_t n)
> +__memchr (void const *s, int c_in, size_t n)
>  {
> -  /* On 32-bit hardware, choosing longword to be a 32-bit unsigned
> -     long instead of a 64-bit uintmax_t tends to give better
> -     performance.  On 64-bit hardware, unsigned long is generally 64
> -     bits already.  Change this typedef to experiment with
> -     performance.  */
> -  typedef unsigned long int longword;
> +  if (__glibc_unlikely (n == 0))
> +    return NULL;
>
> -  const unsigned char *char_ptr;
> -  const longword *longword_ptr;
> -  longword repeated_one;
> -  longword repeated_c;
> -  unsigned char c;
> +  uintptr_t s_int = (uintptr_t) s;
>
> -  c = (unsigned char) c_in;
> +  /* Set up a word, each of whose bytes is C.  */
> +  op_t repeated_c = repeat_bytes (c_in);
> +  op_t before_mask = create_mask (s_int);
>
> -  /* Handle the first few bytes by reading one byte at a time.
> -     Do this until CHAR_PTR is aligned on a longword boundary.  */
> -  for (char_ptr = (const unsigned char *) s;
> -       n > 0 && (size_t) char_ptr % sizeof (longword) != 0;
> -       --n, ++char_ptr)
> -    if (*char_ptr == c)
> -      return (void *) char_ptr;
> +  /* Compute the address of the last byte taking in consideration possible
> +     overflow.  */
> +  const char *lbyte = sadd (s_int, n - 1);
>
> -  longword_ptr = (const longword *) char_ptr;
> +  /* Compute the address of the word containing the last byte. */
> +  const op_t *lword = word_containing (lbyte);
>
> -  /* All these elucidatory comments refer to 4-byte longwords,
> -     but the theory applies equally well to any size longwords.  */
> +  /* Read the first word, but munge it so that bytes before the array
> +     will not match goal.  */
> +  const op_t *word_ptr = word_containing (s);
> +  op_t word = (*word_ptr | before_mask) ^ (repeated_c & before_mask);
>
> -  /* Compute auxiliary longword values:
> -     repeated_one is a value which has a 1 in every byte.
> -     repeated_c has c in every byte.  */
> -  repeated_one = 0x01010101;
> -  repeated_c = c | (c << 8);
> -  repeated_c |= repeated_c << 16;
> -  if (0xffffffffU < (longword) -1)
> +  while (has_eq (word, repeated_c) == 0)
>      {
> -      repeated_one |= repeated_one << 31 << 1;
> -      repeated_c |= repeated_c << 31 << 1;
> -      if (8 < sizeof (longword))
> -       {
> -         size_t i;
> -
> -         for (i = 64; i < sizeof (longword) * 8; i *= 2)
> -           {
> -             repeated_one |= repeated_one << i;
> -             repeated_c |= repeated_c << i;
> -           }
> -       }
> +      if (word_ptr == lword)
> +       return NULL;
Inuitively making lword, lword - 1 so that normal returns don't need the extra
null check would be faster.
> +      word = *++word_ptr;
>      }
>
> -  /* Instead of the traditional loop which tests each byte, we will test a
> -     longword at a time.  The tricky part is testing if *any of the four*
> -     bytes in the longword in question are equal to c.  We first use an xor
> -     with repeated_c.  This reduces the task to testing whether *any of the
> -     four* bytes in longword1 is zero.
> -
> -     We compute tmp =
> -       ((longword1 - repeated_one) & ~longword1) & (repeated_one << 7).
> -     That is, we perform the following operations:
> -       1. Subtract repeated_one.
> -       2. & ~longword1.
> -       3. & a mask consisting of 0x80 in every byte.
> -     Consider what happens in each byte:
> -       - If a byte of longword1 is zero, step 1 and 2 transform it into 0xff,
> -        and step 3 transforms it into 0x80.  A carry can also be propagated
> -        to more significant bytes.
> -       - If a byte of longword1 is nonzero, let its lowest 1 bit be at
> -        position k (0 <= k <= 7); so the lowest k bits are 0.  After step 1,
> -        the byte ends in a single bit of value 0 and k bits of value 1.
> -        After step 2, the result is just k bits of value 1: 2^k - 1.  After
> -        step 3, the result is 0.  And no carry is produced.
> -     So, if longword1 has only non-zero bytes, tmp is zero.
> -     Whereas if longword1 has a zero byte, call j the position of the least
> -     significant zero byte.  Then the result has a zero at positions 0, ...,
> -     j-1 and a 0x80 at position j.  We cannot predict the result at the more
> -     significant bytes (positions j+1..3), but it does not matter since we
> -     already have a non-zero bit at position 8*j+7.
> -
> -     So, the test whether any byte in longword1 is zero is equivalent to
> -     testing whether tmp is nonzero.  */
> -
> -  while (n >= sizeof (longword))
> -    {
> -      longword longword1 = *longword_ptr ^ repeated_c;
> -
> -      if ((((longword1 - repeated_one) & ~longword1)
> -          & (repeated_one << 7)) != 0)
> -       break;
> -      longword_ptr++;
> -      n -= sizeof (longword);
> -    }
> -
> -  char_ptr = (const unsigned char *) longword_ptr;
> -
> -  /* At this point, we know that either n < sizeof (longword), or one of the
> -     sizeof (longword) bytes starting at char_ptr is == c.  On little-endian
> -     machines, we could determine the first such byte without any further
> -     memory accesses, just by looking at the tmp result from the last loop
> -     iteration.  But this does not work on big-endian machines.  Choose code
> -     that works in both cases.  */
> -
> -  for (; n > 0; --n, ++char_ptr)
> -    {
> -      if (*char_ptr == c)
> -       return (void *) char_ptr;
> -    }
> -
> -  return NULL;
> +  /* We found a match, but it might be in a byte past the end
> +     of the array.  */
> +  char *ret = (char *) word_ptr + index_first_eq (word, repeated_c);
> +  return (ret <= lbyte) ? ret : NULL;
>  }
> -#ifdef weak_alias
> +#ifndef MEMCHR
>  weak_alias (__memchr, memchr)
> -#endif
>  libc_hidden_builtin_def (memchr)
> +#endif
> diff --git a/sysdeps/powerpc/powerpc32/power4/multiarch/memchr-ppc32.c b/sysdeps/powerpc/powerpc32/power4/multiarch/memchr-ppc32.c
> index fc69df54b3..02877d3c98 100644
> --- a/sysdeps/powerpc/powerpc32/power4/multiarch/memchr-ppc32.c
> +++ b/sysdeps/powerpc/powerpc32/power4/multiarch/memchr-ppc32.c
> @@ -18,17 +18,11 @@
>
>  #include <string.h>
>
> -#define MEMCHR  __memchr_ppc
> +extern __typeof (memchr) __memchr_ppc attribute_hidden;
>
> -#undef weak_alias
> -#define weak_alias(a, b)
> +#define MEMCHR  __memchr_ppc
> +#include <string/memchr.c>
>
>  #ifdef SHARED
> -# undef libc_hidden_builtin_def
> -# define libc_hidden_builtin_def(name) \
> -  __hidden_ver1(__memchr_ppc, __GI_memchr, __memchr_ppc);
> +__hidden_ver1(__memchr_ppc, __GI_memchr, __memchr_ppc);
>  #endif
> -
> -extern __typeof (memchr) __memchr_ppc attribute_hidden;
> -
> -#include <string/memchr.c>
> diff --git a/sysdeps/powerpc/powerpc64/multiarch/memchr-ppc64.c b/sysdeps/powerpc/powerpc64/multiarch/memchr-ppc64.c
> index 3c966f4403..15beca787b 100644
> --- a/sysdeps/powerpc/powerpc64/multiarch/memchr-ppc64.c
> +++ b/sysdeps/powerpc/powerpc64/multiarch/memchr-ppc64.c
> @@ -18,14 +18,7 @@
>
>  #include <string.h>
>
> -#define MEMCHR  __memchr_ppc
> -
> -#undef weak_alias
> -#define weak_alias(a, b)
> -
> -# undef libc_hidden_builtin_def
> -# define libc_hidden_builtin_def(name)
> -
>  extern __typeof (memchr) __memchr_ppc attribute_hidden;
>
> +#define MEMCHR  __memchr_ppc
>  #include <string/memchr.c>
> --
> 2.34.1
>
  
Adhemerval Zanella Netto Jan. 9, 2023, 8:50 p.m. UTC | #3
On 05/01/23 20:47, Noah Goldstein wrote:
> On Mon, Sep 19, 2022 at 1:05 PM Adhemerval Zanella via Libc-alpha
> <libc-alpha@sourceware.org> wrote:
>>
>> New algorithm have the following key differences:
>>
>>   - Reads first word unaligned and use string-maskoff function to
>>     remove unwanted data.  This strategy follow arch-specific
>>     optimization used on aarch64 and powerpc.
>>
>>   - Use string-fz{b,i} and string-opthr functions.
>>
>> Checked on x86_64-linux-gnu, i686-linux-gnu, powerpc-linux-gnu,
>> and powerpc64-linux-gnu by removing the arch-specific assembly
>> implementation and disabling multi-arch (it covers both LE and BE
>> for 64 and 32 bits).
>>
>> Co-authored-by: Richard Henderson  <rth@twiddle.net>
>> ---
>>  string/memchr.c                               | 168 +++++-------------
>>  .../powerpc32/power4/multiarch/memchr-ppc32.c |  14 +-
>>  .../powerpc64/multiarch/memchr-ppc64.c        |   9 +-
>>  3 files changed, 48 insertions(+), 143 deletions(-)
>>
>> diff --git a/string/memchr.c b/string/memchr.c
>> index 422bcd0cd6..08d518b02d 100644
>> --- a/string/memchr.c
>> +++ b/string/memchr.c
>> @@ -1,10 +1,6 @@
>> -/* Copyright (C) 1991-2022 Free Software Foundation, Inc.
>> +/* Scan memory for a character.  Generic version
>> +   Copyright (C) 1991-2022 Free Software Foundation, Inc.
>>     This file is part of the GNU C Library.
>> -   Based on strlen implementation by Torbjorn Granlund (tege@sics.se),
>> -   with help from Dan Sahlin (dan@sics.se) and
>> -   commentary by Jim Blandy (jimb@ai.mit.edu);
>> -   adaptation to memchr suggested by Dick Karpinski (dick@cca.ucsf.edu),
>> -   and implemented by Roland McGrath (roland@ai.mit.edu).
>>
>>     The GNU C Library is free software; you can redistribute it and/or
>>     modify it under the terms of the GNU Lesser General Public
>> @@ -20,143 +16,65 @@
>>     License along with the GNU C Library; if not, see
>>     <https://www.gnu.org/licenses/>.  */
>>
>> -#ifndef _LIBC
>> -# include <config.h>
>> -#endif
>> -
>> +#include <intprops.h>
>> +#include <string-fza.h>
>> +#include <string-fzb.h>
>> +#include <string-fzi.h>
>> +#include <string-maskoff.h>
>> +#include <string-opthr.h>
>>  #include <string.h>
>>
>> -#include <stddef.h>
>> +#undef memchr
>>
>> -#include <limits.h>
>> -
>> -#undef __memchr
>> -#ifdef _LIBC
>> -# undef memchr
>> +#ifdef MEMCHR
>> +# define __memchr MEMCHR
>>  #endif
>>
>> -#ifndef weak_alias
>> -# define __memchr memchr
>> -#endif
>> -
>> -#ifndef MEMCHR
>> -# define MEMCHR __memchr
>> -#endif
>> +static inline const char *
>> +sadd (uintptr_t x, uintptr_t y)
>> +{
>> +  uintptr_t ret = INT_ADD_OVERFLOW (x, y) ? (uintptr_t)-1 : x + y;
>> +  return (const char *)ret;
>> +}
>>
>>  /* Search no more than N bytes of S for C.  */
>>  void *
>> -MEMCHR (void const *s, int c_in, size_t n)
>> +__memchr (void const *s, int c_in, size_t n)
>>  {
>> -  /* On 32-bit hardware, choosing longword to be a 32-bit unsigned
>> -     long instead of a 64-bit uintmax_t tends to give better
>> -     performance.  On 64-bit hardware, unsigned long is generally 64
>> -     bits already.  Change this typedef to experiment with
>> -     performance.  */
>> -  typedef unsigned long int longword;
>> +  if (__glibc_unlikely (n == 0))
>> +    return NULL;
>>
>> -  const unsigned char *char_ptr;
>> -  const longword *longword_ptr;
>> -  longword repeated_one;
>> -  longword repeated_c;
>> -  unsigned char c;
>> +  uintptr_t s_int = (uintptr_t) s;
>>
>> -  c = (unsigned char) c_in;
>> +  /* Set up a word, each of whose bytes is C.  */
>> +  op_t repeated_c = repeat_bytes (c_in);
>> +  op_t before_mask = create_mask (s_int);
>>
>> -  /* Handle the first few bytes by reading one byte at a time.
>> -     Do this until CHAR_PTR is aligned on a longword boundary.  */
>> -  for (char_ptr = (const unsigned char *) s;
>> -       n > 0 && (size_t) char_ptr % sizeof (longword) != 0;
>> -       --n, ++char_ptr)
>> -    if (*char_ptr == c)
>> -      return (void *) char_ptr;
>> +  /* Compute the address of the last byte taking in consideration possible
>> +     overflow.  */
>> +  const char *lbyte = sadd (s_int, n - 1);
> 
> Do you need this? The comparison in the loop is == so letting it
> overflow should be fine no?

Do you mean the saturation add or the last lbyte check? For saturation add
I recall that it requires for memchr (..., SIZE_MAX), otherwise the last
byte/word would be incorrect (I fixed some assembly routines that triggered
this issue in the past).

>>
>> -  longword_ptr = (const longword *) char_ptr;
>> +  /* Compute the address of the word containing the last byte. */
>> +  const op_t *lword = word_containing (lbyte);
>>
>> -  /* All these elucidatory comments refer to 4-byte longwords,
>> -     but the theory applies equally well to any size longwords.  */
>> +  /* Read the first word, but munge it so that bytes before the array
>> +     will not match goal.  */
>> +  const op_t *word_ptr = word_containing (s);
>> +  op_t word = (*word_ptr | before_mask) ^ (repeated_c & before_mask);
> 
> Likewise, prefer just shifting out the invalid comparisons on the first word.

I will need to check why this is not really working, I think I suggest it
on previous iteration and I could not make it work for some reason.

>>
>> -  /* Compute auxiliary longword values:
>> -     repeated_one is a value which has a 1 in every byte.
>> -     repeated_c has c in every byte.  */
>> -  repeated_one = 0x01010101;
>> -  repeated_c = c | (c << 8);
>> -  repeated_c |= repeated_c << 16;
>> -  if (0xffffffffU < (longword) -1)
>> +  while (has_eq (word, repeated_c) == 0)
>>      {
>> -      repeated_one |= repeated_one << 31 << 1;
>> -      repeated_c |= repeated_c << 31 << 1;
>> -      if (8 < sizeof (longword))
>> -       {
>> -         size_t i;
>> -
>> -         for (i = 64; i < sizeof (longword) * 8; i *= 2)
>> -           {
>> -             repeated_one |= repeated_one << i;
>> -             repeated_c |= repeated_c << i;
>> -           }
>> -       }
>> +      if (word_ptr == lword)
>> +       return NULL;
>> +      word = *++word_ptr;
>>      }
>>
>> -  /* Instead of the traditional loop which tests each byte, we will test a
>> -     longword at a time.  The tricky part is testing if *any of the four*
>> -     bytes in the longword in question are equal to c.  We first use an xor
>> -     with repeated_c.  This reduces the task to testing whether *any of the
>> -     four* bytes in longword1 is zero.
>> -
>> -     We compute tmp =
>> -       ((longword1 - repeated_one) & ~longword1) & (repeated_one << 7).
>> -     That is, we perform the following operations:
>> -       1. Subtract repeated_one.
>> -       2. & ~longword1.
>> -       3. & a mask consisting of 0x80 in every byte.
>> -     Consider what happens in each byte:
>> -       - If a byte of longword1 is zero, step 1 and 2 transform it into 0xff,
>> -        and step 3 transforms it into 0x80.  A carry can also be propagated
>> -        to more significant bytes.
>> -       - If a byte of longword1 is nonzero, let its lowest 1 bit be at
>> -        position k (0 <= k <= 7); so the lowest k bits are 0.  After step 1,
>> -        the byte ends in a single bit of value 0 and k bits of value 1.
>> -        After step 2, the result is just k bits of value 1: 2^k - 1.  After
>> -        step 3, the result is 0.  And no carry is produced.
>> -     So, if longword1 has only non-zero bytes, tmp is zero.
>> -     Whereas if longword1 has a zero byte, call j the position of the least
>> -     significant zero byte.  Then the result has a zero at positions 0, ...,
>> -     j-1 and a 0x80 at position j.  We cannot predict the result at the more
>> -     significant bytes (positions j+1..3), but it does not matter since we
>> -     already have a non-zero bit at position 8*j+7.
>> -
>> -     So, the test whether any byte in longword1 is zero is equivalent to
>> -     testing whether tmp is nonzero.  */
>> -
>> -  while (n >= sizeof (longword))
>> -    {
>> -      longword longword1 = *longword_ptr ^ repeated_c;
>> -
>> -      if ((((longword1 - repeated_one) & ~longword1)
>> -          & (repeated_one << 7)) != 0)
>> -       break;
>> -      longword_ptr++;
>> -      n -= sizeof (longword);
>> -    }
>> -
>> -  char_ptr = (const unsigned char *) longword_ptr;
>> -
>> -  /* At this point, we know that either n < sizeof (longword), or one of the
>> -     sizeof (longword) bytes starting at char_ptr is == c.  On little-endian
>> -     machines, we could determine the first such byte without any further
>> -     memory accesses, just by looking at the tmp result from the last loop
>> -     iteration.  But this does not work on big-endian machines.  Choose code
>> -     that works in both cases.  */
>> -
>> -  for (; n > 0; --n, ++char_ptr)
>> -    {
>> -      if (*char_ptr == c)
>> -       return (void *) char_ptr;
>> -    }
>> -
>> -  return NULL;
>> +  /* We found a match, but it might be in a byte past the end
>> +     of the array.  */
>> +  char *ret = (char *) word_ptr + index_first_eq (word, repeated_c);
>> +  return (ret <= lbyte) ? ret : NULL;
>>  }
>> -#ifdef weak_alias
>> +#ifndef MEMCHR
>>  weak_alias (__memchr, memchr)
>> -#endif
>>  libc_hidden_builtin_def (memchr)
>> +#endif
>> diff --git a/sysdeps/powerpc/powerpc32/power4/multiarch/memchr-ppc32.c b/sysdeps/powerpc/powerpc32/power4/multiarch/memchr-ppc32.c
>> index fc69df54b3..02877d3c98 100644
>> --- a/sysdeps/powerpc/powerpc32/power4/multiarch/memchr-ppc32.c
>> +++ b/sysdeps/powerpc/powerpc32/power4/multiarch/memchr-ppc32.c
>> @@ -18,17 +18,11 @@
>>
>>  #include <string.h>
>>
>> -#define MEMCHR  __memchr_ppc
>> +extern __typeof (memchr) __memchr_ppc attribute_hidden;
>>
>> -#undef weak_alias
>> -#define weak_alias(a, b)
>> +#define MEMCHR  __memchr_ppc
>> +#include <string/memchr.c>
>>
>>  #ifdef SHARED
>> -# undef libc_hidden_builtin_def
>> -# define libc_hidden_builtin_def(name) \
>> -  __hidden_ver1(__memchr_ppc, __GI_memchr, __memchr_ppc);
>> +__hidden_ver1(__memchr_ppc, __GI_memchr, __memchr_ppc);
>>  #endif
>> -
>> -extern __typeof (memchr) __memchr_ppc attribute_hidden;
>> -
>> -#include <string/memchr.c>
>> diff --git a/sysdeps/powerpc/powerpc64/multiarch/memchr-ppc64.c b/sysdeps/powerpc/powerpc64/multiarch/memchr-ppc64.c
>> index 3c966f4403..15beca787b 100644
>> --- a/sysdeps/powerpc/powerpc64/multiarch/memchr-ppc64.c
>> +++ b/sysdeps/powerpc/powerpc64/multiarch/memchr-ppc64.c
>> @@ -18,14 +18,7 @@
>>
>>  #include <string.h>
>>
>> -#define MEMCHR  __memchr_ppc
>> -
>> -#undef weak_alias
>> -#define weak_alias(a, b)
>> -
>> -# undef libc_hidden_builtin_def
>> -# define libc_hidden_builtin_def(name)
>> -
>>  extern __typeof (memchr) __memchr_ppc attribute_hidden;
>>
>> +#define MEMCHR  __memchr_ppc
>>  #include <string/memchr.c>
>> --
>> 2.34.1
>>
  
Adhemerval Zanella Netto Jan. 9, 2023, 8:51 p.m. UTC | #4
On 05/01/23 20:49, Noah Goldstein wrote:
> On Mon, Sep 19, 2022 at 1:05 PM Adhemerval Zanella via Libc-alpha
> <libc-alpha@sourceware.org> wrote:
>>
>> New algorithm have the following key differences:
>>
>>   - Reads first word unaligned and use string-maskoff function to
>>     remove unwanted data.  This strategy follow arch-specific
>>     optimization used on aarch64 and powerpc.
>>
>>   - Use string-fz{b,i} and string-opthr functions.
>>
>> Checked on x86_64-linux-gnu, i686-linux-gnu, powerpc-linux-gnu,
>> and powerpc64-linux-gnu by removing the arch-specific assembly
>> implementation and disabling multi-arch (it covers both LE and BE
>> for 64 and 32 bits).
>>
>> Co-authored-by: Richard Henderson  <rth@twiddle.net>
>> ---
>>  string/memchr.c                               | 168 +++++-------------
>>  .../powerpc32/power4/multiarch/memchr-ppc32.c |  14 +-
>>  .../powerpc64/multiarch/memchr-ppc64.c        |   9 +-
>>  3 files changed, 48 insertions(+), 143 deletions(-)
>>
>> diff --git a/string/memchr.c b/string/memchr.c
>> index 422bcd0cd6..08d518b02d 100644
>> --- a/string/memchr.c
>> +++ b/string/memchr.c
>> @@ -1,10 +1,6 @@
>> -/* Copyright (C) 1991-2022 Free Software Foundation, Inc.
>> +/* Scan memory for a character.  Generic version
>> +   Copyright (C) 1991-2022 Free Software Foundation, Inc.
>>     This file is part of the GNU C Library.
>> -   Based on strlen implementation by Torbjorn Granlund (tege@sics.se),
>> -   with help from Dan Sahlin (dan@sics.se) and
>> -   commentary by Jim Blandy (jimb@ai.mit.edu);
>> -   adaptation to memchr suggested by Dick Karpinski (dick@cca.ucsf.edu),
>> -   and implemented by Roland McGrath (roland@ai.mit.edu).
>>
>>     The GNU C Library is free software; you can redistribute it and/or
>>     modify it under the terms of the GNU Lesser General Public
>> @@ -20,143 +16,65 @@
>>     License along with the GNU C Library; if not, see
>>     <https://www.gnu.org/licenses/>.  */
>>
>> -#ifndef _LIBC
>> -# include <config.h>
>> -#endif
>> -
>> +#include <intprops.h>
>> +#include <string-fza.h>
>> +#include <string-fzb.h>
>> +#include <string-fzi.h>
>> +#include <string-maskoff.h>
>> +#include <string-opthr.h>
>>  #include <string.h>
>>
>> -#include <stddef.h>
>> +#undef memchr
>>
>> -#include <limits.h>
>> -
>> -#undef __memchr
>> -#ifdef _LIBC
>> -# undef memchr
>> +#ifdef MEMCHR
>> +# define __memchr MEMCHR
>>  #endif
>>
>> -#ifndef weak_alias
>> -# define __memchr memchr
>> -#endif
>> -
>> -#ifndef MEMCHR
>> -# define MEMCHR __memchr
>> -#endif
>> +static inline const char *
>> +sadd (uintptr_t x, uintptr_t y)
>> +{
>> +  uintptr_t ret = INT_ADD_OVERFLOW (x, y) ? (uintptr_t)-1 : x + y;
>> +  return (const char *)ret;
>> +}
>>
>>  /* Search no more than N bytes of S for C.  */
>>  void *
>> -MEMCHR (void const *s, int c_in, size_t n)
>> +__memchr (void const *s, int c_in, size_t n)
>>  {
>> -  /* On 32-bit hardware, choosing longword to be a 32-bit unsigned
>> -     long instead of a 64-bit uintmax_t tends to give better
>> -     performance.  On 64-bit hardware, unsigned long is generally 64
>> -     bits already.  Change this typedef to experiment with
>> -     performance.  */
>> -  typedef unsigned long int longword;
>> +  if (__glibc_unlikely (n == 0))
>> +    return NULL;
>>
>> -  const unsigned char *char_ptr;
>> -  const longword *longword_ptr;
>> -  longword repeated_one;
>> -  longword repeated_c;
>> -  unsigned char c;
>> +  uintptr_t s_int = (uintptr_t) s;
>>
>> -  c = (unsigned char) c_in;
>> +  /* Set up a word, each of whose bytes is C.  */
>> +  op_t repeated_c = repeat_bytes (c_in);
>> +  op_t before_mask = create_mask (s_int);
>>
>> -  /* Handle the first few bytes by reading one byte at a time.
>> -     Do this until CHAR_PTR is aligned on a longword boundary.  */
>> -  for (char_ptr = (const unsigned char *) s;
>> -       n > 0 && (size_t) char_ptr % sizeof (longword) != 0;
>> -       --n, ++char_ptr)
>> -    if (*char_ptr == c)
>> -      return (void *) char_ptr;
>> +  /* Compute the address of the last byte taking in consideration possible
>> +     overflow.  */
>> +  const char *lbyte = sadd (s_int, n - 1);
>>
>> -  longword_ptr = (const longword *) char_ptr;
>> +  /* Compute the address of the word containing the last byte. */
>> +  const op_t *lword = word_containing (lbyte);
>>
>> -  /* All these elucidatory comments refer to 4-byte longwords,
>> -     but the theory applies equally well to any size longwords.  */
>> +  /* Read the first word, but munge it so that bytes before the array
>> +     will not match goal.  */
>> +  const op_t *word_ptr = word_containing (s);
>> +  op_t word = (*word_ptr | before_mask) ^ (repeated_c & before_mask);
>>
>> -  /* Compute auxiliary longword values:
>> -     repeated_one is a value which has a 1 in every byte.
>> -     repeated_c has c in every byte.  */
>> -  repeated_one = 0x01010101;
>> -  repeated_c = c | (c << 8);
>> -  repeated_c |= repeated_c << 16;
>> -  if (0xffffffffU < (longword) -1)
>> +  while (has_eq (word, repeated_c) == 0)
>>      {
>> -      repeated_one |= repeated_one << 31 << 1;
>> -      repeated_c |= repeated_c << 31 << 1;
>> -      if (8 < sizeof (longword))
>> -       {
>> -         size_t i;
>> -
>> -         for (i = 64; i < sizeof (longword) * 8; i *= 2)
>> -           {
>> -             repeated_one |= repeated_one << i;
>> -             repeated_c |= repeated_c << i;
>> -           }
>> -       }
>> +      if (word_ptr == lword)
>> +       return NULL;
> Inuitively making lword, lword - 1 so that normal returns don't need the extra
> null check would be faster.

Hum, I did not follow; could you explain it with more details what you mean here?
  
Noah Goldstein Jan. 9, 2023, 9:26 p.m. UTC | #5
On Mon, Jan 9, 2023 at 12:51 PM Adhemerval Zanella Netto
<adhemerval.zanella@linaro.org> wrote:
>
>
>
> On 05/01/23 20:49, Noah Goldstein wrote:
> > On Mon, Sep 19, 2022 at 1:05 PM Adhemerval Zanella via Libc-alpha
> > <libc-alpha@sourceware.org> wrote:
> >>
> >> New algorithm have the following key differences:
> >>
> >>   - Reads first word unaligned and use string-maskoff function to
> >>     remove unwanted data.  This strategy follow arch-specific
> >>     optimization used on aarch64 and powerpc.
> >>
> >>   - Use string-fz{b,i} and string-opthr functions.
> >>
> >> Checked on x86_64-linux-gnu, i686-linux-gnu, powerpc-linux-gnu,
> >> and powerpc64-linux-gnu by removing the arch-specific assembly
> >> implementation and disabling multi-arch (it covers both LE and BE
> >> for 64 and 32 bits).
> >>
> >> Co-authored-by: Richard Henderson  <rth@twiddle.net>
> >> ---
> >>  string/memchr.c                               | 168 +++++-------------
> >>  .../powerpc32/power4/multiarch/memchr-ppc32.c |  14 +-
> >>  .../powerpc64/multiarch/memchr-ppc64.c        |   9 +-
> >>  3 files changed, 48 insertions(+), 143 deletions(-)
> >>
> >> diff --git a/string/memchr.c b/string/memchr.c
> >> index 422bcd0cd6..08d518b02d 100644
> >> --- a/string/memchr.c
> >> +++ b/string/memchr.c
> >> @@ -1,10 +1,6 @@
> >> -/* Copyright (C) 1991-2022 Free Software Foundation, Inc.
> >> +/* Scan memory for a character.  Generic version
> >> +   Copyright (C) 1991-2022 Free Software Foundation, Inc.
> >>     This file is part of the GNU C Library.
> >> -   Based on strlen implementation by Torbjorn Granlund (tege@sics.se),
> >> -   with help from Dan Sahlin (dan@sics.se) and
> >> -   commentary by Jim Blandy (jimb@ai.mit.edu);
> >> -   adaptation to memchr suggested by Dick Karpinski (dick@cca.ucsf.edu),
> >> -   and implemented by Roland McGrath (roland@ai.mit.edu).
> >>
> >>     The GNU C Library is free software; you can redistribute it and/or
> >>     modify it under the terms of the GNU Lesser General Public
> >> @@ -20,143 +16,65 @@
> >>     License along with the GNU C Library; if not, see
> >>     <https://www.gnu.org/licenses/>.  */
> >>
> >> -#ifndef _LIBC
> >> -# include <config.h>
> >> -#endif
> >> -
> >> +#include <intprops.h>
> >> +#include <string-fza.h>
> >> +#include <string-fzb.h>
> >> +#include <string-fzi.h>
> >> +#include <string-maskoff.h>
> >> +#include <string-opthr.h>
> >>  #include <string.h>
> >>
> >> -#include <stddef.h>
> >> +#undef memchr
> >>
> >> -#include <limits.h>
> >> -
> >> -#undef __memchr
> >> -#ifdef _LIBC
> >> -# undef memchr
> >> +#ifdef MEMCHR
> >> +# define __memchr MEMCHR
> >>  #endif
> >>
> >> -#ifndef weak_alias
> >> -# define __memchr memchr
> >> -#endif
> >> -
> >> -#ifndef MEMCHR
> >> -# define MEMCHR __memchr
> >> -#endif
> >> +static inline const char *
> >> +sadd (uintptr_t x, uintptr_t y)
> >> +{
> >> +  uintptr_t ret = INT_ADD_OVERFLOW (x, y) ? (uintptr_t)-1 : x + y;
> >> +  return (const char *)ret;
> >> +}
> >>
> >>  /* Search no more than N bytes of S for C.  */
> >>  void *
> >> -MEMCHR (void const *s, int c_in, size_t n)
> >> +__memchr (void const *s, int c_in, size_t n)
> >>  {
> >> -  /* On 32-bit hardware, choosing longword to be a 32-bit unsigned
> >> -     long instead of a 64-bit uintmax_t tends to give better
> >> -     performance.  On 64-bit hardware, unsigned long is generally 64
> >> -     bits already.  Change this typedef to experiment with
> >> -     performance.  */
> >> -  typedef unsigned long int longword;
> >> +  if (__glibc_unlikely (n == 0))
> >> +    return NULL;
> >>
> >> -  const unsigned char *char_ptr;
> >> -  const longword *longword_ptr;
> >> -  longword repeated_one;
> >> -  longword repeated_c;
> >> -  unsigned char c;
> >> +  uintptr_t s_int = (uintptr_t) s;
> >>
> >> -  c = (unsigned char) c_in;
> >> +  /* Set up a word, each of whose bytes is C.  */
> >> +  op_t repeated_c = repeat_bytes (c_in);
> >> +  op_t before_mask = create_mask (s_int);
> >>
> >> -  /* Handle the first few bytes by reading one byte at a time.
> >> -     Do this until CHAR_PTR is aligned on a longword boundary.  */
> >> -  for (char_ptr = (const unsigned char *) s;
> >> -       n > 0 && (size_t) char_ptr % sizeof (longword) != 0;
> >> -       --n, ++char_ptr)
> >> -    if (*char_ptr == c)
> >> -      return (void *) char_ptr;
> >> +  /* Compute the address of the last byte taking in consideration possible
> >> +     overflow.  */
> >> +  const char *lbyte = sadd (s_int, n - 1);
> >>
> >> -  longword_ptr = (const longword *) char_ptr;
> >> +  /* Compute the address of the word containing the last byte. */
> >> +  const op_t *lword = word_containing (lbyte);
> >>
> >> -  /* All these elucidatory comments refer to 4-byte longwords,
> >> -     but the theory applies equally well to any size longwords.  */
> >> +  /* Read the first word, but munge it so that bytes before the array
> >> +     will not match goal.  */
> >> +  const op_t *word_ptr = word_containing (s);
> >> +  op_t word = (*word_ptr | before_mask) ^ (repeated_c & before_mask);
> >>
> >> -  /* Compute auxiliary longword values:
> >> -     repeated_one is a value which has a 1 in every byte.
> >> -     repeated_c has c in every byte.  */
> >> -  repeated_one = 0x01010101;
> >> -  repeated_c = c | (c << 8);
> >> -  repeated_c |= repeated_c << 16;
> >> -  if (0xffffffffU < (longword) -1)
> >> +  while (has_eq (word, repeated_c) == 0)
> >>      {
> >> -      repeated_one |= repeated_one << 31 << 1;
> >> -      repeated_c |= repeated_c << 31 << 1;
> >> -      if (8 < sizeof (longword))
> >> -       {
> >> -         size_t i;
> >> -
> >> -         for (i = 64; i < sizeof (longword) * 8; i *= 2)
> >> -           {
> >> -             repeated_one |= repeated_one << i;
> >> -             repeated_c |= repeated_c << i;
> >> -           }
> >> -       }
> >> +      if (word_ptr == lword)
> >> +       return NULL;
> > Inuitively making lword, lword - 1 so that normal returns don't need the extra
> > null check would be faster.
>
> Hum, I did not follow; could you explain it with more details what you mean here?

I was thinking something like:

```
  op_t word = *word_ptr;
  op_t mask = find_eq_low (word, repeated_c)
      >> (CHAR_BIT * (s_int % sizeof (uintptr_t)));
  if (mask)
    {
      char *ret = (char *) s + index_first_ (mask);
      return (ret <= lbyte) ? ret : NULL;
    }
  if (word_ptr == lword)
    return NULL;

  word = *++word_ptr;
  while (word_ptr != lword)
    {
      if (has_eq (word, repeated_c))
return (char *) word_ptr + index_first_eq (word, repeated_c);
      word = *++word_ptr;
    }

  if (has_eq (word, repeated_c))
    {

      /* We found a match, but it might be in a byte past the end
of the array.  */
      char *ret = (char *) word_ptr + index_first_eq (word, repeated_c);
      if (ret <= lbyte)
return ret;
    }
  return NULL;
```

The idea is until the last byte you don't need the extra bounds check (tested
on test-memchr.c on little-endian).
  
Adhemerval Zanella Netto Jan. 10, 2023, 2:33 p.m. UTC | #6
On 09/01/23 18:26, Noah Goldstein wrote:
> On Mon, Jan 9, 2023 at 12:51 PM Adhemerval Zanella Netto
> <adhemerval.zanella@linaro.org> wrote:
>>
>>
>>
>> On 05/01/23 20:49, Noah Goldstein wrote:
>>> On Mon, Sep 19, 2022 at 1:05 PM Adhemerval Zanella via Libc-alpha
>>> <libc-alpha@sourceware.org> wrote:
>>>>
>>>> New algorithm have the following key differences:
>>>>
>>>>   - Reads first word unaligned and use string-maskoff function to
>>>>     remove unwanted data.  This strategy follow arch-specific
>>>>     optimization used on aarch64 and powerpc.
>>>>
>>>>   - Use string-fz{b,i} and string-opthr functions.
>>>>
>>>> Checked on x86_64-linux-gnu, i686-linux-gnu, powerpc-linux-gnu,
>>>> and powerpc64-linux-gnu by removing the arch-specific assembly
>>>> implementation and disabling multi-arch (it covers both LE and BE
>>>> for 64 and 32 bits).
>>>>
>>>> Co-authored-by: Richard Henderson  <rth@twiddle.net>
>>>> ---
>>>>  string/memchr.c                               | 168 +++++-------------
>>>>  .../powerpc32/power4/multiarch/memchr-ppc32.c |  14 +-
>>>>  .../powerpc64/multiarch/memchr-ppc64.c        |   9 +-
>>>>  3 files changed, 48 insertions(+), 143 deletions(-)
>>>>
>>>> diff --git a/string/memchr.c b/string/memchr.c
>>>> index 422bcd0cd6..08d518b02d 100644
>>>> --- a/string/memchr.c
>>>> +++ b/string/memchr.c
>>>> @@ -1,10 +1,6 @@
>>>> -/* Copyright (C) 1991-2022 Free Software Foundation, Inc.
>>>> +/* Scan memory for a character.  Generic version
>>>> +   Copyright (C) 1991-2022 Free Software Foundation, Inc.
>>>>     This file is part of the GNU C Library.
>>>> -   Based on strlen implementation by Torbjorn Granlund (tege@sics.se),
>>>> -   with help from Dan Sahlin (dan@sics.se) and
>>>> -   commentary by Jim Blandy (jimb@ai.mit.edu);
>>>> -   adaptation to memchr suggested by Dick Karpinski (dick@cca.ucsf.edu),
>>>> -   and implemented by Roland McGrath (roland@ai.mit.edu).
>>>>
>>>>     The GNU C Library is free software; you can redistribute it and/or
>>>>     modify it under the terms of the GNU Lesser General Public
>>>> @@ -20,143 +16,65 @@
>>>>     License along with the GNU C Library; if not, see
>>>>     <https://www.gnu.org/licenses/>.  */
>>>>
>>>> -#ifndef _LIBC
>>>> -# include <config.h>
>>>> -#endif
>>>> -
>>>> +#include <intprops.h>
>>>> +#include <string-fza.h>
>>>> +#include <string-fzb.h>
>>>> +#include <string-fzi.h>
>>>> +#include <string-maskoff.h>
>>>> +#include <string-opthr.h>
>>>>  #include <string.h>
>>>>
>>>> -#include <stddef.h>
>>>> +#undef memchr
>>>>
>>>> -#include <limits.h>
>>>> -
>>>> -#undef __memchr
>>>> -#ifdef _LIBC
>>>> -# undef memchr
>>>> +#ifdef MEMCHR
>>>> +# define __memchr MEMCHR
>>>>  #endif
>>>>
>>>> -#ifndef weak_alias
>>>> -# define __memchr memchr
>>>> -#endif
>>>> -
>>>> -#ifndef MEMCHR
>>>> -# define MEMCHR __memchr
>>>> -#endif
>>>> +static inline const char *
>>>> +sadd (uintptr_t x, uintptr_t y)
>>>> +{
>>>> +  uintptr_t ret = INT_ADD_OVERFLOW (x, y) ? (uintptr_t)-1 : x + y;
>>>> +  return (const char *)ret;
>>>> +}
>>>>
>>>>  /* Search no more than N bytes of S for C.  */
>>>>  void *
>>>> -MEMCHR (void const *s, int c_in, size_t n)
>>>> +__memchr (void const *s, int c_in, size_t n)
>>>>  {
>>>> -  /* On 32-bit hardware, choosing longword to be a 32-bit unsigned
>>>> -     long instead of a 64-bit uintmax_t tends to give better
>>>> -     performance.  On 64-bit hardware, unsigned long is generally 64
>>>> -     bits already.  Change this typedef to experiment with
>>>> -     performance.  */
>>>> -  typedef unsigned long int longword;
>>>> +  if (__glibc_unlikely (n == 0))
>>>> +    return NULL;
>>>>
>>>> -  const unsigned char *char_ptr;
>>>> -  const longword *longword_ptr;
>>>> -  longword repeated_one;
>>>> -  longword repeated_c;
>>>> -  unsigned char c;
>>>> +  uintptr_t s_int = (uintptr_t) s;
>>>>
>>>> -  c = (unsigned char) c_in;
>>>> +  /* Set up a word, each of whose bytes is C.  */
>>>> +  op_t repeated_c = repeat_bytes (c_in);
>>>> +  op_t before_mask = create_mask (s_int);
>>>>
>>>> -  /* Handle the first few bytes by reading one byte at a time.
>>>> -     Do this until CHAR_PTR is aligned on a longword boundary.  */
>>>> -  for (char_ptr = (const unsigned char *) s;
>>>> -       n > 0 && (size_t) char_ptr % sizeof (longword) != 0;
>>>> -       --n, ++char_ptr)
>>>> -    if (*char_ptr == c)
>>>> -      return (void *) char_ptr;
>>>> +  /* Compute the address of the last byte taking in consideration possible
>>>> +     overflow.  */
>>>> +  const char *lbyte = sadd (s_int, n - 1);
>>>>
>>>> -  longword_ptr = (const longword *) char_ptr;
>>>> +  /* Compute the address of the word containing the last byte. */
>>>> +  const op_t *lword = word_containing (lbyte);
>>>>
>>>> -  /* All these elucidatory comments refer to 4-byte longwords,
>>>> -     but the theory applies equally well to any size longwords.  */
>>>> +  /* Read the first word, but munge it so that bytes before the array
>>>> +     will not match goal.  */
>>>> +  const op_t *word_ptr = word_containing (s);
>>>> +  op_t word = (*word_ptr | before_mask) ^ (repeated_c & before_mask);
>>>>
>>>> -  /* Compute auxiliary longword values:
>>>> -     repeated_one is a value which has a 1 in every byte.
>>>> -     repeated_c has c in every byte.  */
>>>> -  repeated_one = 0x01010101;
>>>> -  repeated_c = c | (c << 8);
>>>> -  repeated_c |= repeated_c << 16;
>>>> -  if (0xffffffffU < (longword) -1)
>>>> +  while (has_eq (word, repeated_c) == 0)
>>>>      {
>>>> -      repeated_one |= repeated_one << 31 << 1;
>>>> -      repeated_c |= repeated_c << 31 << 1;
>>>> -      if (8 < sizeof (longword))
>>>> -       {
>>>> -         size_t i;
>>>> -
>>>> -         for (i = 64; i < sizeof (longword) * 8; i *= 2)
>>>> -           {
>>>> -             repeated_one |= repeated_one << i;
>>>> -             repeated_c |= repeated_c << i;
>>>> -           }
>>>> -       }
>>>> +      if (word_ptr == lword)
>>>> +       return NULL;
>>> Inuitively making lword, lword - 1 so that normal returns don't need the extra
>>> null check would be faster.
>>
>> Hum, I did not follow; could you explain it with more details what you mean here?
> 
> I was thinking something like:
> 
> ```
>   op_t word = *word_ptr;
>   op_t mask = find_eq_low (word, repeated_c)
>       >> (CHAR_BIT * (s_int % sizeof (uintptr_t)));
>   if (mask)
>     {
>       char *ret = (char *) s + index_first_ (mask);
>       return (ret <= lbyte) ? ret : NULL;
>     }
>   if (word_ptr == lword)
>     return NULL;
> 
>   word = *++word_ptr;
>   while (word_ptr != lword)
>     {
>       if (has_eq (word, repeated_c))
> return (char *) word_ptr + index_first_eq (word, repeated_c);
>       word = *++word_ptr;
>     }
> 
>   if (has_eq (word, repeated_c))
>     {
> 
>       /* We found a match, but it might be in a byte past the end
> of the array.  */
>       char *ret = (char *) word_ptr + index_first_eq (word, repeated_c);
>       if (ret <= lbyte)
> return ret;
>     }
>   return NULL;
> ```
> 
> The idea is until the last byte you don't need the extra bounds check (tested
> on test-memchr.c on little-endian).

Alright, this works. I will update the path.
  

Patch

diff --git a/string/memchr.c b/string/memchr.c
index 422bcd0cd6..08d518b02d 100644
--- a/string/memchr.c
+++ b/string/memchr.c
@@ -1,10 +1,6 @@ 
-/* Copyright (C) 1991-2022 Free Software Foundation, Inc.
+/* Scan memory for a character.  Generic version
+   Copyright (C) 1991-2022 Free Software Foundation, Inc.
    This file is part of the GNU C Library.
-   Based on strlen implementation by Torbjorn Granlund (tege@sics.se),
-   with help from Dan Sahlin (dan@sics.se) and
-   commentary by Jim Blandy (jimb@ai.mit.edu);
-   adaptation to memchr suggested by Dick Karpinski (dick@cca.ucsf.edu),
-   and implemented by Roland McGrath (roland@ai.mit.edu).
 
    The GNU C Library is free software; you can redistribute it and/or
    modify it under the terms of the GNU Lesser General Public
@@ -20,143 +16,65 @@ 
    License along with the GNU C Library; if not, see
    <https://www.gnu.org/licenses/>.  */
 
-#ifndef _LIBC
-# include <config.h>
-#endif
-
+#include <intprops.h>
+#include <string-fza.h>
+#include <string-fzb.h>
+#include <string-fzi.h>
+#include <string-maskoff.h>
+#include <string-opthr.h>
 #include <string.h>
 
-#include <stddef.h>
+#undef memchr
 
-#include <limits.h>
-
-#undef __memchr
-#ifdef _LIBC
-# undef memchr
+#ifdef MEMCHR
+# define __memchr MEMCHR
 #endif
 
-#ifndef weak_alias
-# define __memchr memchr
-#endif
-
-#ifndef MEMCHR
-# define MEMCHR __memchr
-#endif
+static inline const char *
+sadd (uintptr_t x, uintptr_t y)
+{
+  uintptr_t ret = INT_ADD_OVERFLOW (x, y) ? (uintptr_t)-1 : x + y;
+  return (const char *)ret;
+}
 
 /* Search no more than N bytes of S for C.  */
 void *
-MEMCHR (void const *s, int c_in, size_t n)
+__memchr (void const *s, int c_in, size_t n)
 {
-  /* On 32-bit hardware, choosing longword to be a 32-bit unsigned
-     long instead of a 64-bit uintmax_t tends to give better
-     performance.  On 64-bit hardware, unsigned long is generally 64
-     bits already.  Change this typedef to experiment with
-     performance.  */
-  typedef unsigned long int longword;
+  if (__glibc_unlikely (n == 0))
+    return NULL;
 
-  const unsigned char *char_ptr;
-  const longword *longword_ptr;
-  longword repeated_one;
-  longword repeated_c;
-  unsigned char c;
+  uintptr_t s_int = (uintptr_t) s;
 
-  c = (unsigned char) c_in;
+  /* Set up a word, each of whose bytes is C.  */
+  op_t repeated_c = repeat_bytes (c_in);
+  op_t before_mask = create_mask (s_int);
 
-  /* Handle the first few bytes by reading one byte at a time.
-     Do this until CHAR_PTR is aligned on a longword boundary.  */
-  for (char_ptr = (const unsigned char *) s;
-       n > 0 && (size_t) char_ptr % sizeof (longword) != 0;
-       --n, ++char_ptr)
-    if (*char_ptr == c)
-      return (void *) char_ptr;
+  /* Compute the address of the last byte taking in consideration possible
+     overflow.  */
+  const char *lbyte = sadd (s_int, n - 1);
 
-  longword_ptr = (const longword *) char_ptr;
+  /* Compute the address of the word containing the last byte. */
+  const op_t *lword = word_containing (lbyte);
 
-  /* All these elucidatory comments refer to 4-byte longwords,
-     but the theory applies equally well to any size longwords.  */
+  /* Read the first word, but munge it so that bytes before the array
+     will not match goal.  */
+  const op_t *word_ptr = word_containing (s);
+  op_t word = (*word_ptr | before_mask) ^ (repeated_c & before_mask);
 
-  /* Compute auxiliary longword values:
-     repeated_one is a value which has a 1 in every byte.
-     repeated_c has c in every byte.  */
-  repeated_one = 0x01010101;
-  repeated_c = c | (c << 8);
-  repeated_c |= repeated_c << 16;
-  if (0xffffffffU < (longword) -1)
+  while (has_eq (word, repeated_c) == 0)
     {
-      repeated_one |= repeated_one << 31 << 1;
-      repeated_c |= repeated_c << 31 << 1;
-      if (8 < sizeof (longword))
-	{
-	  size_t i;
-
-	  for (i = 64; i < sizeof (longword) * 8; i *= 2)
-	    {
-	      repeated_one |= repeated_one << i;
-	      repeated_c |= repeated_c << i;
-	    }
-	}
+      if (word_ptr == lword)
+	return NULL;
+      word = *++word_ptr;
     }
 
-  /* Instead of the traditional loop which tests each byte, we will test a
-     longword at a time.  The tricky part is testing if *any of the four*
-     bytes in the longword in question are equal to c.  We first use an xor
-     with repeated_c.  This reduces the task to testing whether *any of the
-     four* bytes in longword1 is zero.
-
-     We compute tmp =
-       ((longword1 - repeated_one) & ~longword1) & (repeated_one << 7).
-     That is, we perform the following operations:
-       1. Subtract repeated_one.
-       2. & ~longword1.
-       3. & a mask consisting of 0x80 in every byte.
-     Consider what happens in each byte:
-       - If a byte of longword1 is zero, step 1 and 2 transform it into 0xff,
-	 and step 3 transforms it into 0x80.  A carry can also be propagated
-	 to more significant bytes.
-       - If a byte of longword1 is nonzero, let its lowest 1 bit be at
-	 position k (0 <= k <= 7); so the lowest k bits are 0.  After step 1,
-	 the byte ends in a single bit of value 0 and k bits of value 1.
-	 After step 2, the result is just k bits of value 1: 2^k - 1.  After
-	 step 3, the result is 0.  And no carry is produced.
-     So, if longword1 has only non-zero bytes, tmp is zero.
-     Whereas if longword1 has a zero byte, call j the position of the least
-     significant zero byte.  Then the result has a zero at positions 0, ...,
-     j-1 and a 0x80 at position j.  We cannot predict the result at the more
-     significant bytes (positions j+1..3), but it does not matter since we
-     already have a non-zero bit at position 8*j+7.
-
-     So, the test whether any byte in longword1 is zero is equivalent to
-     testing whether tmp is nonzero.  */
-
-  while (n >= sizeof (longword))
-    {
-      longword longword1 = *longword_ptr ^ repeated_c;
-
-      if ((((longword1 - repeated_one) & ~longword1)
-	   & (repeated_one << 7)) != 0)
-	break;
-      longword_ptr++;
-      n -= sizeof (longword);
-    }
-
-  char_ptr = (const unsigned char *) longword_ptr;
-
-  /* At this point, we know that either n < sizeof (longword), or one of the
-     sizeof (longword) bytes starting at char_ptr is == c.  On little-endian
-     machines, we could determine the first such byte without any further
-     memory accesses, just by looking at the tmp result from the last loop
-     iteration.  But this does not work on big-endian machines.  Choose code
-     that works in both cases.  */
-
-  for (; n > 0; --n, ++char_ptr)
-    {
-      if (*char_ptr == c)
-	return (void *) char_ptr;
-    }
-
-  return NULL;
+  /* We found a match, but it might be in a byte past the end
+     of the array.  */
+  char *ret = (char *) word_ptr + index_first_eq (word, repeated_c);
+  return (ret <= lbyte) ? ret : NULL;
 }
-#ifdef weak_alias
+#ifndef MEMCHR
 weak_alias (__memchr, memchr)
-#endif
 libc_hidden_builtin_def (memchr)
+#endif
diff --git a/sysdeps/powerpc/powerpc32/power4/multiarch/memchr-ppc32.c b/sysdeps/powerpc/powerpc32/power4/multiarch/memchr-ppc32.c
index fc69df54b3..02877d3c98 100644
--- a/sysdeps/powerpc/powerpc32/power4/multiarch/memchr-ppc32.c
+++ b/sysdeps/powerpc/powerpc32/power4/multiarch/memchr-ppc32.c
@@ -18,17 +18,11 @@ 
 
 #include <string.h>
 
-#define MEMCHR  __memchr_ppc
+extern __typeof (memchr) __memchr_ppc attribute_hidden;
 
-#undef weak_alias
-#define weak_alias(a, b)
+#define MEMCHR  __memchr_ppc
+#include <string/memchr.c>
 
 #ifdef SHARED
-# undef libc_hidden_builtin_def
-# define libc_hidden_builtin_def(name) \
-  __hidden_ver1(__memchr_ppc, __GI_memchr, __memchr_ppc);
+__hidden_ver1(__memchr_ppc, __GI_memchr, __memchr_ppc);
 #endif
-
-extern __typeof (memchr) __memchr_ppc attribute_hidden;
-
-#include <string/memchr.c>
diff --git a/sysdeps/powerpc/powerpc64/multiarch/memchr-ppc64.c b/sysdeps/powerpc/powerpc64/multiarch/memchr-ppc64.c
index 3c966f4403..15beca787b 100644
--- a/sysdeps/powerpc/powerpc64/multiarch/memchr-ppc64.c
+++ b/sysdeps/powerpc/powerpc64/multiarch/memchr-ppc64.c
@@ -18,14 +18,7 @@ 
 
 #include <string.h>
 
-#define MEMCHR  __memchr_ppc
-
-#undef weak_alias
-#define weak_alias(a, b)
-
-# undef libc_hidden_builtin_def
-# define libc_hidden_builtin_def(name)
-
 extern __typeof (memchr) __memchr_ppc attribute_hidden;
 
+#define MEMCHR  __memchr_ppc
 #include <string/memchr.c>