[V4,10/10] autovectorizer: Test autovectorization of different dot-prod modes.
Commit Message
Changes from previous revision:
Rename new `check_effective_target' and tests to make their intent
clearer.
* lib/target-supports.exp: For new `check_effective_target',
s/vect_dotprod_twoway/vect_dotprod_hisi/.
* One test is renamed to `vect-dotprod-conv-optab.c' to emphasize
aim of checking the new dotprod convert optab allows
autovectorization of a given datatype to distinct target
data-types.
* The aarch64 runtime-correctness check has had the mode supported
for its two-way dot-product added to the test name, resulting in
the new `vect-dotprod-twoway-hisi.c' name.
------
Given the novel treatment of the dot product optab as a conversion, we
are now able to target different relationships between output modes and
input modes.
This is made clearer by way of example. Previously, on AArch64, the
following loop was vectorizable:
uint32_t udot4(int n, uint8_t* data) {
uint32_t sum = 0;
for (int i=0; i<n; i+=1)
sum += data[i] * data[i];
return sum;
}
while the following was not:
uint32_t udot2(int n, uint16_t* data) {
uint32_t sum = 0;
for (int i=0; i<n; i+=1)
sum += data[i] * data[i];
return sum;
}
Under the new treatment of the dot product optab, they are both now
vectorizable.
This adds the relevant target-agnostic check to ensure this behavior
in the autovectorizer, gated behind the new check_effective_target
`vect_dotprod_hisi' as well a runtime check targeting aarch64.
gcc/testsuite/ChangeLog:
* lib/target-supports.exp (check_effective_target_vect_dotprod_hisi):
New.
* gcc.dg/vect/vect-dotprod-conv-optab.c: Likewise.
* gcc.target/aarch64/vect-dotprod-twoway-hisi.c: Likewise.
---
.../gcc.dg/vect/vect-dotprod-conv-optab.c | 41 ++++++++++++
.../aarch64/vect-dotprod-twoway-hisi.c | 66 +++++++++++++++++++
gcc/testsuite/lib/target-supports.exp | 9 +++
3 files changed, 116 insertions(+)
create mode 100644 gcc/testsuite/gcc.dg/vect/vect-dotprod-conv-optab.c
create mode 100644 gcc/testsuite/gcc.target/aarch64/vect-dotprod-twoway-hisi.c
new file mode 100644
@@ -0,0 +1,41 @@
+/* { dg-do compile } */
+/* { dg-require-effective-target vect_dotprod_hisi } */
+/* Ensure that, given the same input datatype, both the two-way and four-way
+ dot products are autovectorized, with the correct operation then selected
+ based on the distinct output types. */
+#include <stdint.h>
+
+uint32_t udot4(int n, uint8_t* data) {
+ uint32_t sum = 0;
+ for (int i=0; i<n; i+=1) {
+ sum += data[i] * data[i];
+ }
+ return sum;
+}
+
+int32_t sdot4(int n, int8_t* data) {
+ int32_t sum = 0;
+ for (int i=0; i<n; i+=1) {
+ sum += data[i] * data[i];
+ }
+ return sum;
+}
+
+uint32_t udot2(int n, uint16_t* data) {
+ uint32_t sum = 0;
+ for (int i=0; i<n; i+=1) {
+ sum += data[i] * data[i];
+ }
+ return sum;
+}
+
+int32_t sdot2(int n, int16_t* data) {
+ int32_t sum = 0;
+ for (int i=0; i<n; i+=1) {
+ sum += data[i] * data[i];
+ }
+ return sum;
+}
+
+/* { dg-final { scan-tree-dump-times "vectorized 1 loops" 4 "vect" } } */
+/* { dg-final { scan-tree-dump-times "vect_recog_dot_prod_pattern: detected" 4 "vect" } } */
new file mode 100644
@@ -0,0 +1,66 @@
+/* { dg-do run } */
+/* { dg-require-effective-target vect_dotprod_hisi } */
+/* { dg-options "-static -O3 -ftree-vectorize -fdump-tree-vect-details -save-temps" } */
+/* Ensure runtime correctness in the autovectorized two-way dot product operations. */
+
+#include <stdint.h>
+#include <stdlib.h>
+#pragma GCC target "+sme2"
+
+uint32_t
+udot2 (int n, uint16_t* data) __arm_streaming
+{
+ uint32_t sum = 0;
+ for (int i=0; i<n; i+=1) {
+ sum += data[i] * data[i];
+ }
+ return sum;
+}
+
+int32_t
+sdot2 (int n, int16_t* data) __arm_streaming
+{
+ int32_t sum = 0;
+ for (int i=0; i<n; i+=1) {
+ sum += data[i] * data[i];
+ }
+ return sum;
+}
+
+int
+main ()
+{
+
+ uint16_t u_input_nil[] = { [0 ... 3] = 0 };
+ uint16_t u_input_min[] = { [0 ... 3] = 1 };
+ uint16_t u_input_max[] = { [0 ... 3] = 32767};
+
+ uint32_t u_nil_dotprod = udot2 (4, u_input_nil);
+ uint32_t u_min_dotprod = udot2 (4, u_input_min);
+ uint32_t u_max_dotprod = udot2 (4, u_input_max);
+
+ if (u_nil_dotprod != 0
+ || u_min_dotprod != 4
+ || u_max_dotprod != 4294705156)
+ abort ();
+
+ int16_t s_input_nil[] = { [0 ... 3] = 0 };
+ int16_t s_input_min[] = { [0 ... 3] = -23170 };
+ int16_t s_input_max[] = { [0 ... 3] = 23170 };
+
+ int32_t s_nil_dotprod = sdot2 (4, s_input_nil);
+ int32_t s_min_dotprod = sdot2 (4, s_input_min);
+ int32_t s_max_dotprod = sdot2 (4, s_input_max);
+
+ if (s_nil_dotprod != 0
+ || s_min_dotprod != 2147395600
+ || s_max_dotprod != 2147395600)
+ abort ();
+
+ return 0;
+}
+
+/* { dg-final { scan-tree-dump-times "vectorized 1 loops" 2 "vect" } } */
+/* { dg-final { scan-tree-dump-times "vect_recog_dot_prod_pattern: detected" 46 "vect" } } */
+/* { dg-final { scan-assembler "\[ \t\]udot\tz\[0-9\]+.s, z\[0-9\]+.h, z\[0-9\]+.h" } } */
+/* { dg-final { scan-assembler "\[ \t\]sdot\tz\[0-9\]+.s, z\[0-9\]+.h, z\[0-9\]+.h" } } */
@@ -4258,6 +4258,15 @@ proc check_effective_target_vect_int { } {
}}]
}
+# Return 1 if the target supports two-way dot products on inputs of hi mode
+# producing si outputs, 0 otherwise.
+
+proc check_effective_target_vect_dotprod_hisi { } {
+ return [check_cached_effective_target_indexed aarch64_sme2 {
+ expr { [check_effective_target_aarch64_sme2]
+ }}]
+}
+
# Return 1 if the target supports vectorization of early breaks,
# 0 otherwise.
#