From patchwork Wed Oct 25 16:17:12 2017 Content-Type: text/plain; charset="utf-8" MIME-Version: 1.0 Content-Transfer-Encoding: 7bit X-Patchwork-Submitter: Ulrich Weigand X-Patchwork-Id: 23818 Received: (qmail 99684 invoked by alias); 25 Oct 2017 16:19:09 -0000 Mailing-List: contact gdb-patches-help@sourceware.org; run by ezmlm Precedence: bulk List-Id: List-Unsubscribe: List-Subscribe: List-Archive: List-Post: List-Help: , Sender: gdb-patches-owner@sourceware.org Delivered-To: mailing list gdb-patches@sourceware.org Received: (qmail 99669 invoked by uid 89); 25 Oct 2017 16:19:09 -0000 Authentication-Results: sourceware.org; auth=none X-Virus-Found: No X-Spam-SWARE-Status: No, score=-11.0 required=5.0 tests=AWL, BAYES_00, GIT_PATCH_2, GIT_PATCH_3, KAM_ASCII_DIVIDERS, RCVD_IN_DNSWL_LOW, SPF_PASS autolearn=ham version=3.3.2 spammy=UD:ieee.org, ORDER X-HELO: mx0a-001b2d01.pphosted.com Received: from mx0a-001b2d01.pphosted.com (HELO mx0a-001b2d01.pphosted.com) (148.163.156.1) by sourceware.org (qpsmtpd/0.93/v0.84-503-g423c35a) with ESMTP; Wed, 25 Oct 2017 16:18:59 +0000 Received: from pps.filterd (m0098399.ppops.net [127.0.0.1]) by mx0a-001b2d01.pphosted.com (8.16.0.21/8.16.0.21) with SMTP id v9PGIceA099390 for ; Wed, 25 Oct 2017 12:18:57 -0400 Received: from e06smtp13.uk.ibm.com (e06smtp13.uk.ibm.com [195.75.94.109]) by mx0a-001b2d01.pphosted.com with ESMTP id 2dtujm10pt-1 (version=TLSv1.2 cipher=AES256-SHA bits=256 verify=NOT) for ; Wed, 25 Oct 2017 12:18:52 -0400 Received: from localhost by e06smtp13.uk.ibm.com with IBM ESMTP SMTP Gateway: Authorized Use Only! Violators will be prosecuted for from ; Wed, 25 Oct 2017 17:17:15 +0100 Received: from b06cxnps4076.portsmouth.uk.ibm.com (9.149.109.198) by e06smtp13.uk.ibm.com (192.168.101.143) with IBM ESMTP SMTP Gateway: Authorized Use Only! Violators will be prosecuted; Wed, 25 Oct 2017 17:17:12 +0100 Received: from d06av23.portsmouth.uk.ibm.com (d06av23.portsmouth.uk.ibm.com [9.149.105.59]) by b06cxnps4076.portsmouth.uk.ibm.com (8.14.9/8.14.9/NCO v10.0) with ESMTP id v9PGHC2X11337794 for ; Wed, 25 Oct 2017 16:17:12 GMT Received: from d06av23.portsmouth.uk.ibm.com (unknown [127.0.0.1]) by IMSVA (Postfix) with ESMTP id 27CCAA404D for ; Wed, 25 Oct 2017 17:12:27 +0100 (BST) Received: from d06av23.portsmouth.uk.ibm.com (unknown [127.0.0.1]) by IMSVA (Postfix) with ESMTP id 0E783A4051 for ; Wed, 25 Oct 2017 17:12:27 +0100 (BST) Received: from oc3748833570.ibm.com (unknown [9.152.213.178]) by d06av23.portsmouth.uk.ibm.com (Postfix) with ESMTP for ; Wed, 25 Oct 2017 17:12:27 +0100 (BST) Received: by oc3748833570.ibm.com (Postfix, from userid 1000) id 1DC88D807F1; Wed, 25 Oct 2017 18:17:12 +0200 (CEST) Subject: [RFC v2][9/9] Target FP: Merge doublest.c and dfp.c into target-float.c To: gdb-patches@sourceware.org Date: Wed, 25 Oct 2017 18:17:12 +0200 (CEST) From: "Ulrich Weigand" MIME-Version: 1.0 X-TM-AS-GCONF: 00 x-cbid: 17102516-0012-0000-0000-00000585CC4E X-IBM-AV-DETECTION: SAVI=unused REMOTE=unused XFE=unused x-cbparentid: 17102516-0013-0000-0000-00001900456B Message-Id: <20171025161712.1DC88D807F1@oc3748833570.ibm.com> X-Proofpoint-Virus-Version: vendor=fsecure engine=2.50.10432:, , definitions=2017-10-25_10:, , signatures=0 X-Proofpoint-Spam-Details: rule=outbound_notspam policy=outbound score=0 spamscore=0 suspectscore=43 malwarescore=0 phishscore=0 adultscore=0 bulkscore=0 classifier=spam adjust=0 reason=mlx scancount=1 engine=8.0.1-1707230000 definitions=main-1710250216 [RFC v2][9/9] Target FP: Merge doublest.c and dfp.c into target-float.c Now that all target FP operations are performed via target-float.c, this file remains the sole caller of functions in doublest.c and dfp.c. Therefore, this patch merges the latter files into the former and makes all their function static there. Bye, Ulrich ChangeLog: * Makefile.in (SFILES): Remove doublest.c and dfp.c. (HFILES_NO_SRCDIR): Remove doublest.h and dfp.h. (COMMON_OBS): Remove doublest.o and dfp.o. Do not build target-float.c (instead of doublest.c) with -Wformat-nonliteral. * doublest.c: Remove file. * doublest.h: Remove file. * dfp.c: Remove file. * dfp.h: Remove file. * target-float.c: Do not include "doublest.h" and "dfp.h". (DOUBLEST): Move here from doublest.h. (enum float_kind): Likewise. (FLOATFORMAT_CHAR_BIT): Likewise. (FLOATFORMAT_LARGEST_BYTES): Likewise. (floatformat_totalsize_bytes): Move here from doublest.c. Make static. (floatformat_precision): Likewise. (floatformat_normalize_byteorder, get_field, put_field): Likewise. (floatformat_is_negative, floatformat_classify, floatformat_mantissa): Likewise. (host_float_format, host_double_format, host_long_double_format): Likewise. (floatformat_to_string, floatformat_from_string): Likewise. (floatformat_to_doublest): Likewise. Also, inline the original convert_floatformat_to_doublest. (floatformat_from_doublest): Likewise. Also, inline the original convert_floatformat_from_doublest. Include "dpd/decimal128.h", "dpd/decimal64.h", and "dpd/decimal32.h". (MAX_DECIMAL_STRING): Move here from dfp.c. (match_endianness): Likewise. (set_decnumber_context, decimal_check_errors): Likewise. (decimal_from_number, decimal_to_number): Likewise. (decimal_to_string, decimal_from_string): Likewise. Make static. (decimal_from_longest, decimal_from_ulongest): Likewise. (decimal_to_longest): Likewise. (decimal_binop, decimal_is_zero, decimal_compare): Likewise. (decimal_convert): Likewise. Index: binutils-gdb/gdb/Makefile.in =================================================================== --- binutils-gdb.orig/gdb/Makefile.in +++ binutils-gdb/gdb/Makefile.in @@ -1086,11 +1086,9 @@ SFILES = \ d-valprint.c \ dbxread.c \ demangle.c \ - dfp.c \ dictionary.c \ disasm.c \ disasm-selftests.c \ - doublest.c \ dtrace-probe.c \ dummy-frame.c \ dwarf2-frame.c \ @@ -1320,11 +1318,9 @@ HFILES_NO_SRCDIR = \ darwin-nat.h \ dcache.h \ defs.h \ - dfp.h \ dicos-tdep.h \ dictionary.h \ disasm.h \ - doublest.h \ dummy-frame.h \ dwarf2-frame.h \ dwarf2-frame-tailcall.h \ @@ -1710,11 +1706,9 @@ COMMON_OBS = $(DEPFILES) $(CONFIG_OBS) $ dbxread.o \ debug.o \ demangle.o \ - dfp.o \ dictionary.o \ disasm.o \ disasm-selftests.o \ - doublest.o \ dummy-frame.o \ dwarf2-frame.o \ dwarf2-frame-tailcall.o \ @@ -2736,10 +2730,10 @@ printcmd.o: $(srcdir)/printcmd.c $(COMPILE.post) $(srcdir)/printcmd.c $(POSTCOMPILE) -# Same for "doublest.c". -doublest.o: $(srcdir)/doublest.c +# Same for "target-float.c". +target-float.o: $(srcdir)/target-float.c $(COMPILE.pre) $(INTERNAL_CFLAGS) $(GDB_WARN_CFLAGS_NO_FORMAT) \ - $(COMPILE.post) $(srcdir)/doublest.c + $(COMPILE.post) $(srcdir)/target-float.c # ada-exp.c can appear in srcdir, for releases; or in ., for # development builds. Index: binutils-gdb/gdb/target-float.c =================================================================== --- binutils-gdb.orig/gdb/target-float.c +++ binutils-gdb/gdb/target-float.c @@ -18,8 +18,6 @@ along with this program. If not, see . */ #include "defs.h" -#include "dfp.h" -#include "doublest.h" #include "gdbtypes.h" #include "floatformat.h" #include "target-float.h" @@ -29,6 +27,877 @@ #include +#if (defined HAVE_LONG_DOUBLE && defined PRINTF_HAS_LONG_DOUBLE \ + && defined SCANF_HAS_LONG_DOUBLE) +typedef long double DOUBLEST; +#else +typedef double DOUBLEST; +/* If we can't scan or print long double, we don't want to use it + anywhere. */ +# undef HAVE_LONG_DOUBLE +# undef PRINTF_HAS_LONG_DOUBLE +# undef SCANF_HAS_LONG_DOUBLE +#endif + +/* Different kinds of floatformat numbers recognized by + floatformat_classify. To avoid portability issues, we use local + values instead of the C99 macros (FP_NAN et cetera). */ +enum float_kind { + float_nan, + float_infinite, + float_zero, + float_normal, + float_subnormal +}; + +/* The odds that CHAR_BIT will be anything but 8 are low enough that I'm not + going to bother with trying to muck around with whether it is defined in + a system header, what we do if not, etc. */ +#define FLOATFORMAT_CHAR_BIT 8 + +/* The number of bytes that the largest floating-point type that we + can convert to doublest will need. */ +#define FLOATFORMAT_LARGEST_BYTES 16 + +/* Return the floatformat's total size in host bytes. */ +static size_t +floatformat_totalsize_bytes (const struct floatformat *fmt) +{ + return ((fmt->totalsize + FLOATFORMAT_CHAR_BIT - 1) + / FLOATFORMAT_CHAR_BIT); +} + +/* Return the precision of the floating point format FMT. */ +static int +floatformat_precision (const struct floatformat *fmt) +{ + /* Assume the precision of and IBM long double is twice the precision + of the underlying double. This matches what GCC does. */ + if (fmt->split_half) + return 2 * floatformat_precision (fmt->split_half); + + /* Otherwise, the precision is the size of mantissa in bits, + including the implicit bit if present. */ + int prec = fmt->man_len; + if (fmt->intbit == floatformat_intbit_no) + prec++; + + return prec; +} + +/* Normalize the byte order of FROM into TO. If no normalization is + needed then FMT->byteorder is returned and TO is not changed; + otherwise the format of the normalized form in TO is returned. */ +static enum floatformat_byteorders +floatformat_normalize_byteorder (const struct floatformat *fmt, + const void *from, void *to) +{ + const unsigned char *swapin; + unsigned char *swapout; + int words; + + if (fmt->byteorder == floatformat_little + || fmt->byteorder == floatformat_big) + return fmt->byteorder; + + words = fmt->totalsize / FLOATFORMAT_CHAR_BIT; + words >>= 2; + + swapout = (unsigned char *)to; + swapin = (const unsigned char *)from; + + if (fmt->byteorder == floatformat_vax) + { + while (words-- > 0) + { + *swapout++ = swapin[1]; + *swapout++ = swapin[0]; + *swapout++ = swapin[3]; + *swapout++ = swapin[2]; + swapin += 4; + } + /* This may look weird, since VAX is little-endian, but it is + easier to translate to big-endian than to little-endian. */ + return floatformat_big; + } + else + { + gdb_assert (fmt->byteorder == floatformat_littlebyte_bigword); + + while (words-- > 0) + { + *swapout++ = swapin[3]; + *swapout++ = swapin[2]; + *swapout++ = swapin[1]; + *swapout++ = swapin[0]; + swapin += 4; + } + return floatformat_big; + } +} + +/* Extract a field which starts at START and is LEN bytes long. DATA and + TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */ +static unsigned long +get_field (const bfd_byte *data, enum floatformat_byteorders order, + unsigned int total_len, unsigned int start, unsigned int len) +{ + unsigned long result; + unsigned int cur_byte; + int cur_bitshift; + + /* Caller must byte-swap words before calling this routine. */ + gdb_assert (order == floatformat_little || order == floatformat_big); + + /* Start at the least significant part of the field. */ + if (order == floatformat_little) + { + /* We start counting from the other end (i.e, from the high bytes + rather than the low bytes). As such, we need to be concerned + with what happens if bit 0 doesn't start on a byte boundary. + I.e, we need to properly handle the case where total_len is + not evenly divisible by 8. So we compute ``excess'' which + represents the number of bits from the end of our starting + byte needed to get to bit 0. */ + int excess = FLOATFORMAT_CHAR_BIT - (total_len % FLOATFORMAT_CHAR_BIT); + + cur_byte = (total_len / FLOATFORMAT_CHAR_BIT) + - ((start + len + excess) / FLOATFORMAT_CHAR_BIT); + cur_bitshift = ((start + len + excess) % FLOATFORMAT_CHAR_BIT) + - FLOATFORMAT_CHAR_BIT; + } + else + { + cur_byte = (start + len) / FLOATFORMAT_CHAR_BIT; + cur_bitshift = + ((start + len) % FLOATFORMAT_CHAR_BIT) - FLOATFORMAT_CHAR_BIT; + } + if (cur_bitshift > -FLOATFORMAT_CHAR_BIT) + result = *(data + cur_byte) >> (-cur_bitshift); + else + result = 0; + cur_bitshift += FLOATFORMAT_CHAR_BIT; + if (order == floatformat_little) + ++cur_byte; + else + --cur_byte; + + /* Move towards the most significant part of the field. */ + while (cur_bitshift < len) + { + result |= (unsigned long)*(data + cur_byte) << cur_bitshift; + cur_bitshift += FLOATFORMAT_CHAR_BIT; + switch (order) + { + case floatformat_little: + ++cur_byte; + break; + case floatformat_big: + --cur_byte; + break; + } + } + if (len < sizeof(result) * FLOATFORMAT_CHAR_BIT) + /* Mask out bits which are not part of the field. */ + result &= ((1UL << len) - 1); + return result; +} + +/* Set a field which starts at START and is LEN bytes long. DATA and + TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */ +static void +put_field (unsigned char *data, enum floatformat_byteorders order, + unsigned int total_len, unsigned int start, unsigned int len, + unsigned long stuff_to_put) +{ + unsigned int cur_byte; + int cur_bitshift; + + /* Caller must byte-swap words before calling this routine. */ + gdb_assert (order == floatformat_little || order == floatformat_big); + + /* Start at the least significant part of the field. */ + if (order == floatformat_little) + { + int excess = FLOATFORMAT_CHAR_BIT - (total_len % FLOATFORMAT_CHAR_BIT); + + cur_byte = (total_len / FLOATFORMAT_CHAR_BIT) + - ((start + len + excess) / FLOATFORMAT_CHAR_BIT); + cur_bitshift = ((start + len + excess) % FLOATFORMAT_CHAR_BIT) + - FLOATFORMAT_CHAR_BIT; + } + else + { + cur_byte = (start + len) / FLOATFORMAT_CHAR_BIT; + cur_bitshift = + ((start + len) % FLOATFORMAT_CHAR_BIT) - FLOATFORMAT_CHAR_BIT; + } + if (cur_bitshift > -FLOATFORMAT_CHAR_BIT) + { + *(data + cur_byte) &= + ~(((1 << ((start + len) % FLOATFORMAT_CHAR_BIT)) - 1) + << (-cur_bitshift)); + *(data + cur_byte) |= + (stuff_to_put & ((1 << FLOATFORMAT_CHAR_BIT) - 1)) << (-cur_bitshift); + } + cur_bitshift += FLOATFORMAT_CHAR_BIT; + if (order == floatformat_little) + ++cur_byte; + else + --cur_byte; + + /* Move towards the most significant part of the field. */ + while (cur_bitshift < len) + { + if (len - cur_bitshift < FLOATFORMAT_CHAR_BIT) + { + /* This is the last byte. */ + *(data + cur_byte) &= + ~((1 << (len - cur_bitshift)) - 1); + *(data + cur_byte) |= (stuff_to_put >> cur_bitshift); + } + else + *(data + cur_byte) = ((stuff_to_put >> cur_bitshift) + & ((1 << FLOATFORMAT_CHAR_BIT) - 1)); + cur_bitshift += FLOATFORMAT_CHAR_BIT; + if (order == floatformat_little) + ++cur_byte; + else + --cur_byte; + } +} + +/* Check if VAL (which is assumed to be a floating point number whose + format is described by FMT) is negative. */ +static int +floatformat_is_negative (const struct floatformat *fmt, + const bfd_byte *uval) +{ + enum floatformat_byteorders order; + unsigned char newfrom[FLOATFORMAT_LARGEST_BYTES]; + + gdb_assert (fmt != NULL); + gdb_assert (fmt->totalsize + <= FLOATFORMAT_LARGEST_BYTES * FLOATFORMAT_CHAR_BIT); + + /* An IBM long double (a two element array of double) always takes the + sign of the first double. */ + if (fmt->split_half) + fmt = fmt->split_half; + + order = floatformat_normalize_byteorder (fmt, uval, newfrom); + + if (order != fmt->byteorder) + uval = newfrom; + + return get_field (uval, order, fmt->totalsize, fmt->sign_start, 1); +} + +/* Check if VAL is "not a number" (NaN) for FMT. */ +static enum float_kind +floatformat_classify (const struct floatformat *fmt, + const bfd_byte *uval) +{ + long exponent; + unsigned long mant; + unsigned int mant_bits, mant_off; + int mant_bits_left; + enum floatformat_byteorders order; + unsigned char newfrom[FLOATFORMAT_LARGEST_BYTES]; + int mant_zero; + + gdb_assert (fmt != NULL); + gdb_assert (fmt->totalsize + <= FLOATFORMAT_LARGEST_BYTES * FLOATFORMAT_CHAR_BIT); + + /* An IBM long double (a two element array of double) can be classified + by looking at the first double. inf and nan are specified as + ignoring the second double. zero and subnormal will always have + the second double 0.0 if the long double is correctly rounded. */ + if (fmt->split_half) + fmt = fmt->split_half; + + order = floatformat_normalize_byteorder (fmt, uval, newfrom); + + if (order != fmt->byteorder) + uval = newfrom; + + exponent = get_field (uval, order, fmt->totalsize, fmt->exp_start, + fmt->exp_len); + + mant_bits_left = fmt->man_len; + mant_off = fmt->man_start; + + mant_zero = 1; + while (mant_bits_left > 0) + { + mant_bits = std::min (mant_bits_left, 32); + + mant = get_field (uval, order, fmt->totalsize, mant_off, mant_bits); + + /* If there is an explicit integer bit, mask it off. */ + if (mant_off == fmt->man_start + && fmt->intbit == floatformat_intbit_yes) + mant &= ~(1 << (mant_bits - 1)); + + if (mant) + { + mant_zero = 0; + break; + } + + mant_off += mant_bits; + mant_bits_left -= mant_bits; + } + + /* If exp_nan is not set, assume that inf, NaN, and subnormals are not + supported. */ + if (! fmt->exp_nan) + { + if (mant_zero) + return float_zero; + else + return float_normal; + } + + if (exponent == 0) + { + if (mant_zero) + return float_zero; + else + return float_subnormal; + } + + if (exponent == fmt->exp_nan) + { + if (mant_zero) + return float_infinite; + else + return float_nan; + } + + return float_normal; +} + +/* Convert the mantissa of VAL (which is assumed to be a floating + point number whose format is described by FMT) into a hexadecimal + and store it in a static string. Return a pointer to that string. */ +static const char * +floatformat_mantissa (const struct floatformat *fmt, + const bfd_byte *val) +{ + unsigned char *uval = (unsigned char *) val; + unsigned long mant; + unsigned int mant_bits, mant_off; + int mant_bits_left; + static char res[50]; + char buf[9]; + int len; + enum floatformat_byteorders order; + unsigned char newfrom[FLOATFORMAT_LARGEST_BYTES]; + + gdb_assert (fmt != NULL); + gdb_assert (fmt->totalsize + <= FLOATFORMAT_LARGEST_BYTES * FLOATFORMAT_CHAR_BIT); + + /* For IBM long double (a two element array of double), return the + mantissa of the first double. The problem with returning the + actual mantissa from both doubles is that there can be an + arbitrary number of implied 0's or 1's between the mantissas + of the first and second double. In any case, this function + is only used for dumping out nans, and a nan is specified to + ignore the value in the second double. */ + if (fmt->split_half) + fmt = fmt->split_half; + + order = floatformat_normalize_byteorder (fmt, uval, newfrom); + + if (order != fmt->byteorder) + uval = newfrom; + + if (! fmt->exp_nan) + return 0; + + /* Make sure we have enough room to store the mantissa. */ + gdb_assert (sizeof res > ((fmt->man_len + 7) / 8) * 2); + + mant_off = fmt->man_start; + mant_bits_left = fmt->man_len; + mant_bits = (mant_bits_left % 32) > 0 ? mant_bits_left % 32 : 32; + + mant = get_field (uval, order, fmt->totalsize, mant_off, mant_bits); + + len = xsnprintf (res, sizeof res, "%lx", mant); + + mant_off += mant_bits; + mant_bits_left -= mant_bits; + + while (mant_bits_left > 0) + { + mant = get_field (uval, order, fmt->totalsize, mant_off, 32); + + xsnprintf (buf, sizeof buf, "%08lx", mant); + gdb_assert (len + strlen (buf) <= sizeof res); + strcat (res, buf); + + mant_off += 32; + mant_bits_left -= 32; + } + + return res; +} + +/* Convert TO/FROM target to the hosts DOUBLEST floating-point format. + + If the host and target formats agree, we just copy the raw data + into the appropriate type of variable and return, letting the host + increase precision as necessary. Otherwise, we call the conversion + routine and let it do the dirty work. Note that even if the target + and host floating-point formats match, the length of the types + might still be different, so the conversion routines must make sure + to not overrun any buffers. For example, on x86, long double is + the 80-bit extended precision type on both 32-bit and 64-bit ABIs, + but by default it is stored as 12 bytes on 32-bit, and 16 bytes on + 64-bit, for alignment reasons. See comment in store_typed_floating + for a discussion about zeroing out remaining bytes in the target + buffer. */ + +static const struct floatformat *host_float_format = GDB_HOST_FLOAT_FORMAT; +static const struct floatformat *host_double_format = GDB_HOST_DOUBLE_FORMAT; +static const struct floatformat *host_long_double_format + = GDB_HOST_LONG_DOUBLE_FORMAT; + +/* Convert from FMT to a DOUBLEST. FROM is the address of the extended float. + Store the DOUBLEST in *TO. */ +static void +floatformat_to_doublest (const struct floatformat *fmt, + const void *from, DOUBLEST *to) +{ + gdb_assert (fmt != NULL); + + if (fmt == host_float_format) + { + float val = 0; + + memcpy (&val, from, floatformat_totalsize_bytes (fmt)); + *to = val; + return; + } + else if (fmt == host_double_format) + { + double val = 0; + + memcpy (&val, from, floatformat_totalsize_bytes (fmt)); + *to = val; + return; + } + else if (fmt == host_long_double_format) + { + long double val = 0; + + memcpy (&val, from, floatformat_totalsize_bytes (fmt)); + *to = val; + return; + } + + unsigned char *ufrom = (unsigned char *) from; + DOUBLEST dto; + long exponent; + unsigned long mant; + unsigned int mant_bits, mant_off; + int mant_bits_left; + int special_exponent; /* It's a NaN, denorm or zero. */ + enum floatformat_byteorders order; + unsigned char newfrom[FLOATFORMAT_LARGEST_BYTES]; + enum float_kind kind; + + gdb_assert (fmt->totalsize + <= FLOATFORMAT_LARGEST_BYTES * FLOATFORMAT_CHAR_BIT); + + /* For non-numbers, reuse libiberty's logic to find the correct + format. We do not lose any precision in this case by passing + through a double. */ + kind = floatformat_classify (fmt, (const bfd_byte *) from); + if (kind == float_infinite || kind == float_nan) + { + double dto; + + floatformat_to_double (fmt->split_half ? fmt->split_half : fmt, + from, &dto); + *to = (DOUBLEST) dto; + return; + } + + order = floatformat_normalize_byteorder (fmt, ufrom, newfrom); + + if (order != fmt->byteorder) + ufrom = newfrom; + + if (fmt->split_half) + { + DOUBLEST dtop, dbot; + + floatformat_to_doublest (fmt->split_half, ufrom, &dtop); + /* Preserve the sign of 0, which is the sign of the top + half. */ + if (dtop == 0.0) + { + *to = dtop; + return; + } + floatformat_to_doublest (fmt->split_half, + ufrom + fmt->totalsize / FLOATFORMAT_CHAR_BIT / 2, + &dbot); + *to = dtop + dbot; + return; + } + + exponent = get_field (ufrom, order, fmt->totalsize, fmt->exp_start, + fmt->exp_len); + /* Note that if exponent indicates a NaN, we can't really do anything useful + (not knowing if the host has NaN's, or how to build one). So it will + end up as an infinity or something close; that is OK. */ + + mant_bits_left = fmt->man_len; + mant_off = fmt->man_start; + dto = 0.0; + + special_exponent = exponent == 0 || exponent == fmt->exp_nan; + + /* Don't bias NaNs. Use minimum exponent for denorms. For + simplicity, we don't check for zero as the exponent doesn't matter. + Note the cast to int; exp_bias is unsigned, so it's important to + make sure the operation is done in signed arithmetic. */ + if (!special_exponent) + exponent -= fmt->exp_bias; + else if (exponent == 0) + exponent = 1 - fmt->exp_bias; + + /* Build the result algebraically. Might go infinite, underflow, etc; + who cares. */ + + /* If this format uses a hidden bit, explicitly add it in now. Otherwise, + increment the exponent by one to account for the integer bit. */ + + if (!special_exponent) + { + if (fmt->intbit == floatformat_intbit_no) + dto = ldexp (1.0, exponent); + else + exponent++; + } + + while (mant_bits_left > 0) + { + mant_bits = std::min (mant_bits_left, 32); + + mant = get_field (ufrom, order, fmt->totalsize, mant_off, mant_bits); + + dto += ldexp ((double) mant, exponent - mant_bits); + exponent -= mant_bits; + mant_off += mant_bits; + mant_bits_left -= mant_bits; + } + + /* Negate it if negative. */ + if (get_field (ufrom, order, fmt->totalsize, fmt->sign_start, 1)) + dto = -dto; + *to = dto; +} + +/* Convert the DOUBLEST *FROM to an extended float in format FMT and + store where TO points. */ +static void +floatformat_from_doublest (const struct floatformat *fmt, + const DOUBLEST *from, void *to) +{ + gdb_assert (fmt != NULL); + + if (fmt == host_float_format) + { + float val = *from; + + memcpy (to, &val, floatformat_totalsize_bytes (fmt)); + return; + } + else if (fmt == host_double_format) + { + double val = *from; + + memcpy (to, &val, floatformat_totalsize_bytes (fmt)); + return; + } + else if (fmt == host_long_double_format) + { + long double val = *from; + + memcpy (to, &val, floatformat_totalsize_bytes (fmt)); + return; + } + + DOUBLEST dfrom; + int exponent; + DOUBLEST mant; + unsigned int mant_bits, mant_off; + int mant_bits_left; + unsigned char *uto = (unsigned char *) to; + enum floatformat_byteorders order = fmt->byteorder; + unsigned char newto[FLOATFORMAT_LARGEST_BYTES]; + + if (order != floatformat_little) + order = floatformat_big; + + if (order != fmt->byteorder) + uto = newto; + + memcpy (&dfrom, from, sizeof (dfrom)); + memset (uto, 0, floatformat_totalsize_bytes (fmt)); + + if (fmt->split_half) + { + /* Use static volatile to ensure that any excess precision is + removed via storing in memory, and so the top half really is + the result of converting to double. */ + static volatile double dtop, dbot; + DOUBLEST dtopnv, dbotnv; + + dtop = (double) dfrom; + /* If the rounded top half is Inf, the bottom must be 0 not NaN + or Inf. */ + if (dtop + dtop == dtop && dtop != 0.0) + dbot = 0.0; + else + dbot = (double) (dfrom - (DOUBLEST) dtop); + dtopnv = dtop; + dbotnv = dbot; + floatformat_from_doublest (fmt->split_half, &dtopnv, uto); + floatformat_from_doublest (fmt->split_half, &dbotnv, + (uto + + fmt->totalsize / FLOATFORMAT_CHAR_BIT / 2)); + return; + } + + if (dfrom == 0) + return; /* Result is zero */ + if (dfrom != dfrom) /* Result is NaN */ + { + /* From is NaN */ + put_field (uto, order, fmt->totalsize, fmt->exp_start, + fmt->exp_len, fmt->exp_nan); + /* Be sure it's not infinity, but NaN value is irrel. */ + put_field (uto, order, fmt->totalsize, fmt->man_start, + fmt->man_len, 1); + goto finalize_byteorder; + } + + /* If negative, set the sign bit. */ + if (dfrom < 0) + { + put_field (uto, order, fmt->totalsize, fmt->sign_start, 1, 1); + dfrom = -dfrom; + } + + if (dfrom + dfrom == dfrom && dfrom != 0.0) /* Result is Infinity. */ + { + /* Infinity exponent is same as NaN's. */ + put_field (uto, order, fmt->totalsize, fmt->exp_start, + fmt->exp_len, fmt->exp_nan); + /* Infinity mantissa is all zeroes. */ + put_field (uto, order, fmt->totalsize, fmt->man_start, + fmt->man_len, 0); + goto finalize_byteorder; + } + +#ifdef HAVE_LONG_DOUBLE + mant = frexpl (dfrom, &exponent); +#else + mant = frexp (dfrom, &exponent); +#endif + + if (exponent + fmt->exp_bias <= 0) + { + /* The value is too small to be expressed in the destination + type (not enough bits in the exponent. Treat as 0. */ + put_field (uto, order, fmt->totalsize, fmt->exp_start, + fmt->exp_len, 0); + put_field (uto, order, fmt->totalsize, fmt->man_start, + fmt->man_len, 0); + goto finalize_byteorder; + } + + if (exponent + fmt->exp_bias >= (1 << fmt->exp_len)) + { + /* The value is too large to fit into the destination. + Treat as infinity. */ + put_field (uto, order, fmt->totalsize, fmt->exp_start, + fmt->exp_len, fmt->exp_nan); + put_field (uto, order, fmt->totalsize, fmt->man_start, + fmt->man_len, 0); + goto finalize_byteorder; + } + + put_field (uto, order, fmt->totalsize, fmt->exp_start, fmt->exp_len, + exponent + fmt->exp_bias - 1); + + mant_bits_left = fmt->man_len; + mant_off = fmt->man_start; + while (mant_bits_left > 0) + { + unsigned long mant_long; + + mant_bits = mant_bits_left < 32 ? mant_bits_left : 32; + + mant *= 4294967296.0; + mant_long = ((unsigned long) mant) & 0xffffffffL; + mant -= mant_long; + + /* If the integer bit is implicit, then we need to discard it. + If we are discarding a zero, we should be (but are not) creating + a denormalized number which means adjusting the exponent + (I think). */ + if (mant_bits_left == fmt->man_len + && fmt->intbit == floatformat_intbit_no) + { + mant_long <<= 1; + mant_long &= 0xffffffffL; + /* If we are processing the top 32 mantissa bits of a doublest + so as to convert to a float value with implied integer bit, + we will only be putting 31 of those 32 bits into the + final value due to the discarding of the top bit. In the + case of a small float value where the number of mantissa + bits is less than 32, discarding the top bit does not alter + the number of bits we will be adding to the result. */ + if (mant_bits == 32) + mant_bits -= 1; + } + + if (mant_bits < 32) + { + /* The bits we want are in the most significant MANT_BITS bits of + mant_long. Move them to the least significant. */ + mant_long >>= 32 - mant_bits; + } + + put_field (uto, order, fmt->totalsize, + mant_off, mant_bits, mant_long); + mant_off += mant_bits; + mant_bits_left -= mant_bits; + } + + finalize_byteorder: + /* Do we need to byte-swap the words in the result? */ + if (order != fmt->byteorder) + floatformat_normalize_byteorder (fmt, newto, to); +} + +/* Convert the byte-stream ADDR, interpreted as floating-point format FMT, + to a string, optionally using the print format FORMAT. */ +static std::string +floatformat_to_string (const struct floatformat *fmt, + const gdb_byte *in, const char *format) +{ + /* Unless we need to adhere to a specific format, provide special + output for certain cases. */ + if (format == nullptr) + { + /* Detect invalid representations. */ + if (!floatformat_is_valid (fmt, in)) + return ""; + + /* Handle NaN and Inf. */ + enum float_kind kind = floatformat_classify (fmt, in); + if (kind == float_nan) + { + const char *sign = floatformat_is_negative (fmt, in)? "-" : ""; + const char *mantissa = floatformat_mantissa (fmt, in); + return string_printf ("%snan(0x%s)", sign, mantissa); + } + else if (kind == float_infinite) + { + const char *sign = floatformat_is_negative (fmt, in)? "-" : ""; + return string_printf ("%sinf", sign); + } + } + + /* Determine the format string to use on the host side. */ + std::string host_format; + char conversion; + + if (format == nullptr) + { + /* If no format was specified, print the number using a format string + where the precision is set to the DECIMAL_DIG value for the given + floating-point format. This value is computed as + + ceil(1 + p * log10(b)), + + where p is the precision of the floating-point format in bits, and + b is the base (which is always 2 for the formats we support). */ + const double log10_2 = .30102999566398119521; + double d_decimal_dig = 1 + floatformat_precision (fmt) * log10_2; + int decimal_dig = d_decimal_dig; + if (decimal_dig < d_decimal_dig) + decimal_dig++; + + host_format = string_printf ("%%.%d", decimal_dig); + conversion = 'g'; + } + else + { + /* Use the specified format, stripping out the conversion character + and length modifier, if present. */ + size_t len = strlen (format); + gdb_assert (len > 1); + conversion = format[--len]; + gdb_assert (conversion == 'e' || conversion == 'f' || conversion == 'g' + || conversion == 'E' || conversion == 'G'); + if (format[len - 1] == 'L') + len--; + + host_format = std::string (format, len); + } + + /* Add the length modifier and conversion character appropriate for + handling the host DOUBLEST type. */ +#ifdef HAVE_LONG_DOUBLE + host_format += 'L'; +#endif + host_format += conversion; + + DOUBLEST doub; + floatformat_to_doublest (fmt, in, &doub); + return string_printf (host_format.c_str (), doub); +} + +/* Parse string STRING into a target floating-number of format FMT and + store it as byte-stream ADDR. Return whether parsing succeeded. */ +static bool +floatformat_from_string (const struct floatformat *fmt, gdb_byte *out, + const std::string &in) +{ + DOUBLEST doub; + int n, num; +#ifdef HAVE_LONG_DOUBLE + const char *scan_format = "%Lg%n"; +#else + const char *scan_format = "%lg%n"; +#endif + num = sscanf (in.c_str (), scan_format, &doub, &n); + + /* The sscanf man page suggests not making any assumptions on the effect + of %n on the result, so we don't. + That is why we simply test num == 0. */ + if (num == 0) + return false; + + /* We only accept the whole string. */ + if (in[n]) + return false; + + floatformat_from_doublest (fmt, &doub, out); + return true; +} + /* Convert the byte-stream ADDR, interpreted as floating-point format FMT, to an integer value (rounding towards zero). */ static LONGEST @@ -182,6 +1051,381 @@ floatformat_compare (const struct floatf } +/* Helper routines operating on decimal floating-point data. */ + +/* Decimal floating point is one of the extension to IEEE 754, which is + described in http://grouper.ieee.org/groups/754/revision.html and + http://www2.hursley.ibm.com/decimal/. It completes binary floating + point by representing floating point more exactly. */ + +/* The order of the following headers is important for making sure + decNumber structure is large enough to hold decimal128 digits. */ + +#include "dpd/decimal128.h" +#include "dpd/decimal64.h" +#include "dpd/decimal32.h" + +/* When using decimal128, this is the maximum string length + 1 + (value comes from libdecnumber's DECIMAL128_String constant). */ +#define MAX_DECIMAL_STRING 43 + +/* In GDB, we are using an array of gdb_byte to represent decimal values. + They are stored in host byte order. This routine does the conversion if + the target byte order is different. */ +static void +match_endianness (const gdb_byte *from, int len, enum bfd_endian byte_order, + gdb_byte *to) +{ + int i; + +#if WORDS_BIGENDIAN +#define OPPOSITE_BYTE_ORDER BFD_ENDIAN_LITTLE +#else +#define OPPOSITE_BYTE_ORDER BFD_ENDIAN_BIG +#endif + + if (byte_order == OPPOSITE_BYTE_ORDER) + for (i = 0; i < len; i++) + to[i] = from[len - i - 1]; + else + for (i = 0; i < len; i++) + to[i] = from[i]; + + return; +} + +/* Helper function to get the appropriate libdecnumber context for each size + of decimal float. */ +static void +set_decnumber_context (decContext *ctx, int len) +{ + switch (len) + { + case 4: + decContextDefault (ctx, DEC_INIT_DECIMAL32); + break; + case 8: + decContextDefault (ctx, DEC_INIT_DECIMAL64); + break; + case 16: + decContextDefault (ctx, DEC_INIT_DECIMAL128); + break; + } + + ctx->traps = 0; +} + +/* Check for errors signaled in the decimal context structure. */ +static void +decimal_check_errors (decContext *ctx) +{ + /* An error here could be a division by zero, an overflow, an underflow or + an invalid operation (from the DEC_Errors constant in decContext.h). + Since GDB doesn't complain about division by zero, overflow or underflow + errors for binary floating, we won't complain about them for decimal + floating either. */ + if (ctx->status & DEC_IEEE_854_Invalid_operation) + { + /* Leave only the error bits in the status flags. */ + ctx->status &= DEC_IEEE_854_Invalid_operation; + error (_("Cannot perform operation: %s"), + decContextStatusToString (ctx)); + } +} + +/* Helper function to convert from libdecnumber's appropriate representation + for computation to each size of decimal float. */ +static void +decimal_from_number (const decNumber *from, gdb_byte *to, int len) +{ + decContext set; + + set_decnumber_context (&set, len); + + switch (len) + { + case 4: + decimal32FromNumber ((decimal32 *) to, from, &set); + break; + case 8: + decimal64FromNumber ((decimal64 *) to, from, &set); + break; + case 16: + decimal128FromNumber ((decimal128 *) to, from, &set); + break; + } +} + +/* Helper function to convert each size of decimal float to libdecnumber's + appropriate representation for computation. */ +static void +decimal_to_number (const gdb_byte *from, int len, decNumber *to) +{ + switch (len) + { + case 4: + decimal32ToNumber ((decimal32 *) from, to); + break; + case 8: + decimal64ToNumber ((decimal64 *) from, to); + break; + case 16: + decimal128ToNumber ((decimal128 *) from, to); + break; + default: + error (_("Unknown decimal floating point type.")); + break; + } +} + +/* Convert decimal type to its string representation. LEN is the length + of the decimal type, 4 bytes for decimal32, 8 bytes for decimal64 and + 16 bytes for decimal128. */ +static std::string +decimal_to_string (const gdb_byte *decbytes, int len, + enum bfd_endian byte_order, const char *format = nullptr) +{ + gdb_byte dec[16]; + + match_endianness (decbytes, len, byte_order, dec); + + if (format != nullptr) + { + /* We don't handle format strings (yet). If the host printf supports + decimal floating point types, just use this. Otherwise, fall back + to printing the number while ignoring the format string. */ +#if defined (PRINTF_HAS_DECFLOAT) + /* FIXME: This makes unwarranted assumptions about the host ABI! */ + return string_printf (format, dec); +#endif + } + + std::string result; + result.resize (MAX_DECIMAL_STRING); + + switch (len) + { + case 4: + decimal32ToString ((decimal32 *) dec, &result[0]); + break; + case 8: + decimal64ToString ((decimal64 *) dec, &result[0]); + break; + case 16: + decimal128ToString ((decimal128 *) dec, &result[0]); + break; + default: + error (_("Unknown decimal floating point type.")); + break; + } + + return result; +} + +/* Convert the string form of a decimal value to its decimal representation. + LEN is the length of the decimal type, 4 bytes for decimal32, 8 bytes for + decimal64 and 16 bytes for decimal128. */ +static bool +decimal_from_string (gdb_byte *decbytes, int len, enum bfd_endian byte_order, + const std::string &string) +{ + decContext set; + gdb_byte dec[16]; + + set_decnumber_context (&set, len); + + switch (len) + { + case 4: + decimal32FromString ((decimal32 *) dec, string.c_str (), &set); + break; + case 8: + decimal64FromString ((decimal64 *) dec, string.c_str (), &set); + break; + case 16: + decimal128FromString ((decimal128 *) dec, string.c_str (), &set); + break; + default: + error (_("Unknown decimal floating point type.")); + break; + } + + match_endianness (dec, len, byte_order, decbytes); + + /* Check for errors in the DFP operation. */ + decimal_check_errors (&set); + + return true; +} + +/* Converts a LONGEST to a decimal float of specified LEN bytes. */ +static void +decimal_from_longest (LONGEST from, + gdb_byte *to, int len, enum bfd_endian byte_order) +{ + gdb_byte dec[16]; + decNumber number; + if ((int32_t) from != from) + /* libdecnumber can convert only 32-bit integers. */ + error (_("Conversion of large integer to a " + "decimal floating type is not supported.")); + + decNumberFromInt32 (&number, (int32_t) from); + + decimal_from_number (&number, dec, len); + match_endianness (dec, len, byte_order, to); +} + +/* Converts a ULONGEST to a decimal float of specified LEN bytes. */ +static void +decimal_from_ulongest (ULONGEST from, + gdb_byte *to, int len, enum bfd_endian byte_order) +{ + gdb_byte dec[16]; + decNumber number; + + if ((uint32_t) from != from) + /* libdecnumber can convert only 32-bit integers. */ + error (_("Conversion of large integer to a " + "decimal floating type is not supported.")); + + decNumberFromUInt32 (&number, (uint32_t) from); + + decimal_from_number (&number, dec, len); + match_endianness (dec, len, byte_order, to); +} + +/* Converts a decimal float of LEN bytes to a LONGEST. */ +static LONGEST +decimal_to_longest (const gdb_byte *from, int len, enum bfd_endian byte_order) +{ + /* libdecnumber has a function to convert from decimal to integer, but + it doesn't work when the decimal number has a fractional part. */ + std::string str = decimal_to_string (from, len, byte_order); + return strtoll (str.c_str (), NULL, 10); +} + +/* Perform operation OP with operands X and Y with sizes LEN_X and LEN_Y + and byte orders BYTE_ORDER_X and BYTE_ORDER_Y, and store value in + RESULT with size LEN_RESULT and byte order BYTE_ORDER_RESULT. */ +static void +decimal_binop (enum exp_opcode op, + const gdb_byte *x, int len_x, enum bfd_endian byte_order_x, + const gdb_byte *y, int len_y, enum bfd_endian byte_order_y, + gdb_byte *result, int len_result, + enum bfd_endian byte_order_result) +{ + decContext set; + decNumber number1, number2, number3; + gdb_byte dec1[16], dec2[16], dec3[16]; + + match_endianness (x, len_x, byte_order_x, dec1); + match_endianness (y, len_y, byte_order_y, dec2); + + decimal_to_number (dec1, len_x, &number1); + decimal_to_number (dec2, len_y, &number2); + + set_decnumber_context (&set, len_result); + + switch (op) + { + case BINOP_ADD: + decNumberAdd (&number3, &number1, &number2, &set); + break; + case BINOP_SUB: + decNumberSubtract (&number3, &number1, &number2, &set); + break; + case BINOP_MUL: + decNumberMultiply (&number3, &number1, &number2, &set); + break; + case BINOP_DIV: + decNumberDivide (&number3, &number1, &number2, &set); + break; + case BINOP_EXP: + decNumberPower (&number3, &number1, &number2, &set); + break; + default: + error (_("Operation not valid for decimal floating point number.")); + break; + } + + /* Check for errors in the DFP operation. */ + decimal_check_errors (&set); + + decimal_from_number (&number3, dec3, len_result); + + match_endianness (dec3, len_result, byte_order_result, result); +} + +/* Returns true if X (which is LEN bytes wide) is the number zero. */ +static int +decimal_is_zero (const gdb_byte *x, int len, enum bfd_endian byte_order) +{ + decNumber number; + gdb_byte dec[16]; + + match_endianness (x, len, byte_order, dec); + decimal_to_number (dec, len, &number); + + return decNumberIsZero (&number); +} + +/* Compares two numbers numerically. If X is less than Y then the return value + will be -1. If they are equal, then the return value will be 0. If X is + greater than the Y then the return value will be 1. */ +static int +decimal_compare (const gdb_byte *x, int len_x, enum bfd_endian byte_order_x, + const gdb_byte *y, int len_y, enum bfd_endian byte_order_y) +{ + decNumber number1, number2, result; + decContext set; + gdb_byte dec1[16], dec2[16]; + int len_result; + + match_endianness (x, len_x, byte_order_x, dec1); + match_endianness (y, len_y, byte_order_y, dec2); + + decimal_to_number (dec1, len_x, &number1); + decimal_to_number (dec2, len_y, &number2); + + /* Perform the comparison in the larger of the two sizes. */ + len_result = len_x > len_y ? len_x : len_y; + set_decnumber_context (&set, len_result); + + decNumberCompare (&result, &number1, &number2, &set); + + /* Check for errors in the DFP operation. */ + decimal_check_errors (&set); + + if (decNumberIsNaN (&result)) + error (_("Comparison with an invalid number (NaN).")); + else if (decNumberIsZero (&result)) + return 0; + else if (decNumberIsNegative (&result)) + return -1; + else + return 1; +} + +/* Convert a decimal value from a decimal type with LEN_FROM bytes to a + decimal type with LEN_TO bytes. */ +static void +decimal_convert (const gdb_byte *from, int len_from, + enum bfd_endian byte_order_from, gdb_byte *to, int len_to, + enum bfd_endian byte_order_to) +{ + decNumber number; + gdb_byte dec[16]; + + match_endianness (from, len_from, byte_order_from, dec); + + decimal_to_number (dec, len_from, &number); + decimal_from_number (&number, dec, len_to); + + match_endianness (dec, len_to, byte_order_to, to); +} + + /* Typed floating-point routines. These routines operate on floating-point values in target format, represented by a byte buffer interpreted as a "struct type", which may be either a binary or decimal floating-point Index: binutils-gdb/gdb/dfp.c =================================================================== --- binutils-gdb.orig/gdb/dfp.c +++ /dev/null @@ -1,389 +0,0 @@ -/* Decimal floating point support for GDB. - - Copyright (C) 2007-2017 Free Software Foundation, Inc. - - This file is part of GDB. - - This program is free software; you can redistribute it and/or modify - it under the terms of the GNU General Public License as published by - the Free Software Foundation; either version 3 of the License, or - (at your option) any later version. - - This program is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - GNU General Public License for more details. - - You should have received a copy of the GNU General Public License - along with this program. If not, see . */ - -#include "defs.h" -#include "expression.h" -#include "dfp.h" - -/* The order of the following headers is important for making sure - decNumber structure is large enough to hold decimal128 digits. */ - -#include "dpd/decimal128.h" -#include "dpd/decimal64.h" -#include "dpd/decimal32.h" - -/* When using decimal128, this is the maximum string length + 1 - (value comes from libdecnumber's DECIMAL128_String constant). */ -#define MAX_DECIMAL_STRING 43 - -/* In GDB, we are using an array of gdb_byte to represent decimal values. - They are stored in host byte order. This routine does the conversion if - the target byte order is different. */ -static void -match_endianness (const gdb_byte *from, int len, enum bfd_endian byte_order, - gdb_byte *to) -{ - int i; - -#if WORDS_BIGENDIAN -#define OPPOSITE_BYTE_ORDER BFD_ENDIAN_LITTLE -#else -#define OPPOSITE_BYTE_ORDER BFD_ENDIAN_BIG -#endif - - if (byte_order == OPPOSITE_BYTE_ORDER) - for (i = 0; i < len; i++) - to[i] = from[len - i - 1]; - else - for (i = 0; i < len; i++) - to[i] = from[i]; - - return; -} - -/* Helper function to get the appropriate libdecnumber context for each size - of decimal float. */ -static void -set_decnumber_context (decContext *ctx, int len) -{ - switch (len) - { - case 4: - decContextDefault (ctx, DEC_INIT_DECIMAL32); - break; - case 8: - decContextDefault (ctx, DEC_INIT_DECIMAL64); - break; - case 16: - decContextDefault (ctx, DEC_INIT_DECIMAL128); - break; - } - - ctx->traps = 0; -} - -/* Check for errors signaled in the decimal context structure. */ -static void -decimal_check_errors (decContext *ctx) -{ - /* An error here could be a division by zero, an overflow, an underflow or - an invalid operation (from the DEC_Errors constant in decContext.h). - Since GDB doesn't complain about division by zero, overflow or underflow - errors for binary floating, we won't complain about them for decimal - floating either. */ - if (ctx->status & DEC_IEEE_854_Invalid_operation) - { - /* Leave only the error bits in the status flags. */ - ctx->status &= DEC_IEEE_854_Invalid_operation; - error (_("Cannot perform operation: %s"), - decContextStatusToString (ctx)); - } -} - -/* Helper function to convert from libdecnumber's appropriate representation - for computation to each size of decimal float. */ -static void -decimal_from_number (const decNumber *from, gdb_byte *to, int len) -{ - decContext set; - - set_decnumber_context (&set, len); - - switch (len) - { - case 4: - decimal32FromNumber ((decimal32 *) to, from, &set); - break; - case 8: - decimal64FromNumber ((decimal64 *) to, from, &set); - break; - case 16: - decimal128FromNumber ((decimal128 *) to, from, &set); - break; - } -} - -/* Helper function to convert each size of decimal float to libdecnumber's - appropriate representation for computation. */ -static void -decimal_to_number (const gdb_byte *from, int len, decNumber *to) -{ - switch (len) - { - case 4: - decimal32ToNumber ((decimal32 *) from, to); - break; - case 8: - decimal64ToNumber ((decimal64 *) from, to); - break; - case 16: - decimal128ToNumber ((decimal128 *) from, to); - break; - default: - error (_("Unknown decimal floating point type.")); - break; - } -} - -/* Convert decimal type to its string representation. LEN is the length - of the decimal type, 4 bytes for decimal32, 8 bytes for decimal64 and - 16 bytes for decimal128. */ -std::string -decimal_to_string (const gdb_byte *decbytes, int len, - enum bfd_endian byte_order, const char *format) -{ - gdb_byte dec[16]; - - match_endianness (decbytes, len, byte_order, dec); - - if (format != nullptr) - { - /* We don't handle format strings (yet). If the host printf supports - decimal floating point types, just use this. Otherwise, fall back - to printing the number while ignoring the format string. */ -#if defined (PRINTF_HAS_DECFLOAT) - /* FIXME: This makes unwarranted assumptions about the host ABI! */ - return string_printf (format, dec); -#endif - } - - std::string result; - result.resize (MAX_DECIMAL_STRING); - - switch (len) - { - case 4: - decimal32ToString ((decimal32 *) dec, &result[0]); - break; - case 8: - decimal64ToString ((decimal64 *) dec, &result[0]); - break; - case 16: - decimal128ToString ((decimal128 *) dec, &result[0]); - break; - default: - error (_("Unknown decimal floating point type.")); - break; - } - - return result; -} - -/* Convert the string form of a decimal value to its decimal representation. - LEN is the length of the decimal type, 4 bytes for decimal32, 8 bytes for - decimal64 and 16 bytes for decimal128. */ -bool -decimal_from_string (gdb_byte *decbytes, int len, enum bfd_endian byte_order, - const std::string &string) -{ - decContext set; - gdb_byte dec[16]; - - set_decnumber_context (&set, len); - - switch (len) - { - case 4: - decimal32FromString ((decimal32 *) dec, string.c_str (), &set); - break; - case 8: - decimal64FromString ((decimal64 *) dec, string.c_str (), &set); - break; - case 16: - decimal128FromString ((decimal128 *) dec, string.c_str (), &set); - break; - default: - error (_("Unknown decimal floating point type.")); - break; - } - - match_endianness (dec, len, byte_order, decbytes); - - /* Check for errors in the DFP operation. */ - decimal_check_errors (&set); - - return true; -} - -/* Converts a LONGEST to a decimal float of specified LEN bytes. */ -void -decimal_from_longest (LONGEST from, - gdb_byte *to, int len, enum bfd_endian byte_order) -{ - gdb_byte dec[16]; - decNumber number; - if ((int32_t) from != from) - /* libdecnumber can convert only 32-bit integers. */ - error (_("Conversion of large integer to a " - "decimal floating type is not supported.")); - - decNumberFromInt32 (&number, (int32_t) from); - - decimal_from_number (&number, dec, len); - match_endianness (dec, len, byte_order, to); -} - -/* Converts a ULONGEST to a decimal float of specified LEN bytes. */ -void -decimal_from_ulongest (ULONGEST from, - gdb_byte *to, int len, enum bfd_endian byte_order) -{ - gdb_byte dec[16]; - decNumber number; - - if ((uint32_t) from != from) - /* libdecnumber can convert only 32-bit integers. */ - error (_("Conversion of large integer to a " - "decimal floating type is not supported.")); - - decNumberFromUInt32 (&number, (uint32_t) from); - - decimal_from_number (&number, dec, len); - match_endianness (dec, len, byte_order, to); -} - -/* Converts a decimal float of LEN bytes to a LONGEST. */ -LONGEST -decimal_to_longest (const gdb_byte *from, int len, enum bfd_endian byte_order) -{ - /* libdecnumber has a function to convert from decimal to integer, but - it doesn't work when the decimal number has a fractional part. */ - std::string str = decimal_to_string (from, len, byte_order); - return strtoll (str.c_str (), NULL, 10); -} - -/* Perform operation OP with operands X and Y with sizes LEN_X and LEN_Y - and byte orders BYTE_ORDER_X and BYTE_ORDER_Y, and store value in - RESULT with size LEN_RESULT and byte order BYTE_ORDER_RESULT. */ -void -decimal_binop (enum exp_opcode op, - const gdb_byte *x, int len_x, enum bfd_endian byte_order_x, - const gdb_byte *y, int len_y, enum bfd_endian byte_order_y, - gdb_byte *result, int len_result, - enum bfd_endian byte_order_result) -{ - decContext set; - decNumber number1, number2, number3; - gdb_byte dec1[16], dec2[16], dec3[16]; - - match_endianness (x, len_x, byte_order_x, dec1); - match_endianness (y, len_y, byte_order_y, dec2); - - decimal_to_number (dec1, len_x, &number1); - decimal_to_number (dec2, len_y, &number2); - - set_decnumber_context (&set, len_result); - - switch (op) - { - case BINOP_ADD: - decNumberAdd (&number3, &number1, &number2, &set); - break; - case BINOP_SUB: - decNumberSubtract (&number3, &number1, &number2, &set); - break; - case BINOP_MUL: - decNumberMultiply (&number3, &number1, &number2, &set); - break; - case BINOP_DIV: - decNumberDivide (&number3, &number1, &number2, &set); - break; - case BINOP_EXP: - decNumberPower (&number3, &number1, &number2, &set); - break; - default: - error (_("Operation not valid for decimal floating point number.")); - break; - } - - /* Check for errors in the DFP operation. */ - decimal_check_errors (&set); - - decimal_from_number (&number3, dec3, len_result); - - match_endianness (dec3, len_result, byte_order_result, result); -} - -/* Returns true if X (which is LEN bytes wide) is the number zero. */ -int -decimal_is_zero (const gdb_byte *x, int len, enum bfd_endian byte_order) -{ - decNumber number; - gdb_byte dec[16]; - - match_endianness (x, len, byte_order, dec); - decimal_to_number (dec, len, &number); - - return decNumberIsZero (&number); -} - -/* Compares two numbers numerically. If X is less than Y then the return value - will be -1. If they are equal, then the return value will be 0. If X is - greater than the Y then the return value will be 1. */ -int -decimal_compare (const gdb_byte *x, int len_x, enum bfd_endian byte_order_x, - const gdb_byte *y, int len_y, enum bfd_endian byte_order_y) -{ - decNumber number1, number2, result; - decContext set; - gdb_byte dec1[16], dec2[16]; - int len_result; - - match_endianness (x, len_x, byte_order_x, dec1); - match_endianness (y, len_y, byte_order_y, dec2); - - decimal_to_number (dec1, len_x, &number1); - decimal_to_number (dec2, len_y, &number2); - - /* Perform the comparison in the larger of the two sizes. */ - len_result = len_x > len_y ? len_x : len_y; - set_decnumber_context (&set, len_result); - - decNumberCompare (&result, &number1, &number2, &set); - - /* Check for errors in the DFP operation. */ - decimal_check_errors (&set); - - if (decNumberIsNaN (&result)) - error (_("Comparison with an invalid number (NaN).")); - else if (decNumberIsZero (&result)) - return 0; - else if (decNumberIsNegative (&result)) - return -1; - else - return 1; -} - -/* Convert a decimal value from a decimal type with LEN_FROM bytes to a - decimal type with LEN_TO bytes. */ -void -decimal_convert (const gdb_byte *from, int len_from, - enum bfd_endian byte_order_from, gdb_byte *to, int len_to, - enum bfd_endian byte_order_to) -{ - decNumber number; - gdb_byte dec[16]; - - match_endianness (from, len_from, byte_order_from, dec); - - decimal_to_number (dec, len_from, &number); - decimal_from_number (&number, dec, len_to); - - match_endianness (dec, len_to, byte_order_to, to); -} Index: binutils-gdb/gdb/dfp.h =================================================================== --- binutils-gdb.orig/gdb/dfp.h +++ /dev/null @@ -1,50 +0,0 @@ -/* Decimal floating point support for GDB. - - Copyright (C) 2007-2017 Free Software Foundation, Inc. - - This file is part of GDB. - - This program is free software; you can redistribute it and/or modify - it under the terms of the GNU General Public License as published by - the Free Software Foundation; either version 3 of the License, or - (at your option) any later version. - - This program is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - GNU General Public License for more details. - - You should have received a copy of the GNU General Public License - along with this program. If not, see . */ - -/* Decimal floating point is one of the extension to IEEE 754, which is - described in http://grouper.ieee.org/groups/754/revision.html and - http://www2.hursley.ibm.com/decimal/. It completes binary floating - point by representing floating point more exactly. */ - -#ifndef DFP_H -#define DFP_H - -#include "expression.h" /* For enum exp_opcode. */ - -extern std::string decimal_to_string (const gdb_byte *, int, enum bfd_endian, - const char *format = nullptr); -extern bool decimal_from_string (gdb_byte *, int, enum bfd_endian, - const std::string &string); -extern void decimal_from_longest (LONGEST from, gdb_byte *to, - int len, enum bfd_endian byte_order); -extern void decimal_from_ulongest (ULONGEST from, gdb_byte *to, - int len, enum bfd_endian byte_order); -extern LONGEST decimal_to_longest (const gdb_byte *from, int len, - enum bfd_endian byte_order); -extern void decimal_binop (enum exp_opcode, - const gdb_byte *, int, enum bfd_endian, - const gdb_byte *, int, enum bfd_endian, - gdb_byte *, int, enum bfd_endian); -extern int decimal_is_zero (const gdb_byte *, int, enum bfd_endian); -extern int decimal_compare (const gdb_byte *, int, enum bfd_endian, - const gdb_byte *, int, enum bfd_endian); -extern void decimal_convert (const gdb_byte *, int, enum bfd_endian, - gdb_byte *, int, enum bfd_endian); - -#endif Index: binutils-gdb/gdb/doublest.c =================================================================== --- binutils-gdb.orig/gdb/doublest.c +++ /dev/null @@ -1,898 +0,0 @@ -/* Floating point routines for GDB, the GNU debugger. - - Copyright (C) 1986-2017 Free Software Foundation, Inc. - - This file is part of GDB. - - This program is free software; you can redistribute it and/or modify - it under the terms of the GNU General Public License as published by - the Free Software Foundation; either version 3 of the License, or - (at your option) any later version. - - This program is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - GNU General Public License for more details. - - You should have received a copy of the GNU General Public License - along with this program. If not, see . */ - -/* Support for converting target fp numbers into host DOUBLEST format. */ - -/* XXX - This code should really be in libiberty/floatformat.c, - however configuration issues with libiberty made this very - difficult to do in the available time. */ - -#include "defs.h" -#include "doublest.h" -#include "floatformat.h" -#include /* ldexp */ -#include - -/* The odds that CHAR_BIT will be anything but 8 are low enough that I'm not - going to bother with trying to muck around with whether it is defined in - a system header, what we do if not, etc. */ -#define FLOATFORMAT_CHAR_BIT 8 - -/* The number of bytes that the largest floating-point type that we - can convert to doublest will need. */ -#define FLOATFORMAT_LARGEST_BYTES 16 - -/* Extract a field which starts at START and is LEN bytes long. DATA and - TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */ -static unsigned long -get_field (const bfd_byte *data, enum floatformat_byteorders order, - unsigned int total_len, unsigned int start, unsigned int len) -{ - unsigned long result; - unsigned int cur_byte; - int cur_bitshift; - - /* Caller must byte-swap words before calling this routine. */ - gdb_assert (order == floatformat_little || order == floatformat_big); - - /* Start at the least significant part of the field. */ - if (order == floatformat_little) - { - /* We start counting from the other end (i.e, from the high bytes - rather than the low bytes). As such, we need to be concerned - with what happens if bit 0 doesn't start on a byte boundary. - I.e, we need to properly handle the case where total_len is - not evenly divisible by 8. So we compute ``excess'' which - represents the number of bits from the end of our starting - byte needed to get to bit 0. */ - int excess = FLOATFORMAT_CHAR_BIT - (total_len % FLOATFORMAT_CHAR_BIT); - - cur_byte = (total_len / FLOATFORMAT_CHAR_BIT) - - ((start + len + excess) / FLOATFORMAT_CHAR_BIT); - cur_bitshift = ((start + len + excess) % FLOATFORMAT_CHAR_BIT) - - FLOATFORMAT_CHAR_BIT; - } - else - { - cur_byte = (start + len) / FLOATFORMAT_CHAR_BIT; - cur_bitshift = - ((start + len) % FLOATFORMAT_CHAR_BIT) - FLOATFORMAT_CHAR_BIT; - } - if (cur_bitshift > -FLOATFORMAT_CHAR_BIT) - result = *(data + cur_byte) >> (-cur_bitshift); - else - result = 0; - cur_bitshift += FLOATFORMAT_CHAR_BIT; - if (order == floatformat_little) - ++cur_byte; - else - --cur_byte; - - /* Move towards the most significant part of the field. */ - while (cur_bitshift < len) - { - result |= (unsigned long)*(data + cur_byte) << cur_bitshift; - cur_bitshift += FLOATFORMAT_CHAR_BIT; - switch (order) - { - case floatformat_little: - ++cur_byte; - break; - case floatformat_big: - --cur_byte; - break; - } - } - if (len < sizeof(result) * FLOATFORMAT_CHAR_BIT) - /* Mask out bits which are not part of the field. */ - result &= ((1UL << len) - 1); - return result; -} - -/* Normalize the byte order of FROM into TO. If no normalization is - needed then FMT->byteorder is returned and TO is not changed; - otherwise the format of the normalized form in TO is returned. */ - -static enum floatformat_byteorders -floatformat_normalize_byteorder (const struct floatformat *fmt, - const void *from, void *to) -{ - const unsigned char *swapin; - unsigned char *swapout; - int words; - - if (fmt->byteorder == floatformat_little - || fmt->byteorder == floatformat_big) - return fmt->byteorder; - - words = fmt->totalsize / FLOATFORMAT_CHAR_BIT; - words >>= 2; - - swapout = (unsigned char *)to; - swapin = (const unsigned char *)from; - - if (fmt->byteorder == floatformat_vax) - { - while (words-- > 0) - { - *swapout++ = swapin[1]; - *swapout++ = swapin[0]; - *swapout++ = swapin[3]; - *swapout++ = swapin[2]; - swapin += 4; - } - /* This may look weird, since VAX is little-endian, but it is - easier to translate to big-endian than to little-endian. */ - return floatformat_big; - } - else - { - gdb_assert (fmt->byteorder == floatformat_littlebyte_bigword); - - while (words-- > 0) - { - *swapout++ = swapin[3]; - *swapout++ = swapin[2]; - *swapout++ = swapin[1]; - *swapout++ = swapin[0]; - swapin += 4; - } - return floatformat_big; - } -} - -/* Convert from FMT to a DOUBLEST. - FROM is the address of the extended float. - Store the DOUBLEST in *TO. */ - -static void -convert_floatformat_to_doublest (const struct floatformat *fmt, - const void *from, - DOUBLEST *to) -{ - unsigned char *ufrom = (unsigned char *) from; - DOUBLEST dto; - long exponent; - unsigned long mant; - unsigned int mant_bits, mant_off; - int mant_bits_left; - int special_exponent; /* It's a NaN, denorm or zero. */ - enum floatformat_byteorders order; - unsigned char newfrom[FLOATFORMAT_LARGEST_BYTES]; - enum float_kind kind; - - gdb_assert (fmt->totalsize - <= FLOATFORMAT_LARGEST_BYTES * FLOATFORMAT_CHAR_BIT); - - /* For non-numbers, reuse libiberty's logic to find the correct - format. We do not lose any precision in this case by passing - through a double. */ - kind = floatformat_classify (fmt, (const bfd_byte *) from); - if (kind == float_infinite || kind == float_nan) - { - double dto; - - floatformat_to_double (fmt->split_half ? fmt->split_half : fmt, - from, &dto); - *to = (DOUBLEST) dto; - return; - } - - order = floatformat_normalize_byteorder (fmt, ufrom, newfrom); - - if (order != fmt->byteorder) - ufrom = newfrom; - - if (fmt->split_half) - { - DOUBLEST dtop, dbot; - - floatformat_to_doublest (fmt->split_half, ufrom, &dtop); - /* Preserve the sign of 0, which is the sign of the top - half. */ - if (dtop == 0.0) - { - *to = dtop; - return; - } - floatformat_to_doublest (fmt->split_half, - ufrom + fmt->totalsize / FLOATFORMAT_CHAR_BIT / 2, - &dbot); - *to = dtop + dbot; - return; - } - - exponent = get_field (ufrom, order, fmt->totalsize, fmt->exp_start, - fmt->exp_len); - /* Note that if exponent indicates a NaN, we can't really do anything useful - (not knowing if the host has NaN's, or how to build one). So it will - end up as an infinity or something close; that is OK. */ - - mant_bits_left = fmt->man_len; - mant_off = fmt->man_start; - dto = 0.0; - - special_exponent = exponent == 0 || exponent == fmt->exp_nan; - - /* Don't bias NaNs. Use minimum exponent for denorms. For - simplicity, we don't check for zero as the exponent doesn't matter. - Note the cast to int; exp_bias is unsigned, so it's important to - make sure the operation is done in signed arithmetic. */ - if (!special_exponent) - exponent -= fmt->exp_bias; - else if (exponent == 0) - exponent = 1 - fmt->exp_bias; - - /* Build the result algebraically. Might go infinite, underflow, etc; - who cares. */ - -/* If this format uses a hidden bit, explicitly add it in now. Otherwise, - increment the exponent by one to account for the integer bit. */ - - if (!special_exponent) - { - if (fmt->intbit == floatformat_intbit_no) - dto = ldexp (1.0, exponent); - else - exponent++; - } - - while (mant_bits_left > 0) - { - mant_bits = std::min (mant_bits_left, 32); - - mant = get_field (ufrom, order, fmt->totalsize, mant_off, mant_bits); - - dto += ldexp ((double) mant, exponent - mant_bits); - exponent -= mant_bits; - mant_off += mant_bits; - mant_bits_left -= mant_bits; - } - - /* Negate it if negative. */ - if (get_field (ufrom, order, fmt->totalsize, fmt->sign_start, 1)) - dto = -dto; - *to = dto; -} - -/* Set a field which starts at START and is LEN bytes long. DATA and - TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */ -static void -put_field (unsigned char *data, enum floatformat_byteorders order, - unsigned int total_len, unsigned int start, unsigned int len, - unsigned long stuff_to_put) -{ - unsigned int cur_byte; - int cur_bitshift; - - /* Caller must byte-swap words before calling this routine. */ - gdb_assert (order == floatformat_little || order == floatformat_big); - - /* Start at the least significant part of the field. */ - if (order == floatformat_little) - { - int excess = FLOATFORMAT_CHAR_BIT - (total_len % FLOATFORMAT_CHAR_BIT); - - cur_byte = (total_len / FLOATFORMAT_CHAR_BIT) - - ((start + len + excess) / FLOATFORMAT_CHAR_BIT); - cur_bitshift = ((start + len + excess) % FLOATFORMAT_CHAR_BIT) - - FLOATFORMAT_CHAR_BIT; - } - else - { - cur_byte = (start + len) / FLOATFORMAT_CHAR_BIT; - cur_bitshift = - ((start + len) % FLOATFORMAT_CHAR_BIT) - FLOATFORMAT_CHAR_BIT; - } - if (cur_bitshift > -FLOATFORMAT_CHAR_BIT) - { - *(data + cur_byte) &= - ~(((1 << ((start + len) % FLOATFORMAT_CHAR_BIT)) - 1) - << (-cur_bitshift)); - *(data + cur_byte) |= - (stuff_to_put & ((1 << FLOATFORMAT_CHAR_BIT) - 1)) << (-cur_bitshift); - } - cur_bitshift += FLOATFORMAT_CHAR_BIT; - if (order == floatformat_little) - ++cur_byte; - else - --cur_byte; - - /* Move towards the most significant part of the field. */ - while (cur_bitshift < len) - { - if (len - cur_bitshift < FLOATFORMAT_CHAR_BIT) - { - /* This is the last byte. */ - *(data + cur_byte) &= - ~((1 << (len - cur_bitshift)) - 1); - *(data + cur_byte) |= (stuff_to_put >> cur_bitshift); - } - else - *(data + cur_byte) = ((stuff_to_put >> cur_bitshift) - & ((1 << FLOATFORMAT_CHAR_BIT) - 1)); - cur_bitshift += FLOATFORMAT_CHAR_BIT; - if (order == floatformat_little) - ++cur_byte; - else - --cur_byte; - } -} - -/* The converse: convert the DOUBLEST *FROM to an extended float and - store where TO points. Neither FROM nor TO have any alignment - restrictions. */ - -static void -convert_doublest_to_floatformat (const struct floatformat *fmt, - const DOUBLEST *from, void *to) -{ - DOUBLEST dfrom; - int exponent; - DOUBLEST mant; - unsigned int mant_bits, mant_off; - int mant_bits_left; - unsigned char *uto = (unsigned char *) to; - enum floatformat_byteorders order = fmt->byteorder; - unsigned char newto[FLOATFORMAT_LARGEST_BYTES]; - - if (order != floatformat_little) - order = floatformat_big; - - if (order != fmt->byteorder) - uto = newto; - - memcpy (&dfrom, from, sizeof (dfrom)); - memset (uto, 0, floatformat_totalsize_bytes (fmt)); - - if (fmt->split_half) - { - /* Use static volatile to ensure that any excess precision is - removed via storing in memory, and so the top half really is - the result of converting to double. */ - static volatile double dtop, dbot; - DOUBLEST dtopnv, dbotnv; - - dtop = (double) dfrom; - /* If the rounded top half is Inf, the bottom must be 0 not NaN - or Inf. */ - if (dtop + dtop == dtop && dtop != 0.0) - dbot = 0.0; - else - dbot = (double) (dfrom - (DOUBLEST) dtop); - dtopnv = dtop; - dbotnv = dbot; - floatformat_from_doublest (fmt->split_half, &dtopnv, uto); - floatformat_from_doublest (fmt->split_half, &dbotnv, - (uto - + fmt->totalsize / FLOATFORMAT_CHAR_BIT / 2)); - return; - } - - if (dfrom == 0) - return; /* Result is zero */ - if (dfrom != dfrom) /* Result is NaN */ - { - /* From is NaN */ - put_field (uto, order, fmt->totalsize, fmt->exp_start, - fmt->exp_len, fmt->exp_nan); - /* Be sure it's not infinity, but NaN value is irrel. */ - put_field (uto, order, fmt->totalsize, fmt->man_start, - fmt->man_len, 1); - goto finalize_byteorder; - } - - /* If negative, set the sign bit. */ - if (dfrom < 0) - { - put_field (uto, order, fmt->totalsize, fmt->sign_start, 1, 1); - dfrom = -dfrom; - } - - if (dfrom + dfrom == dfrom && dfrom != 0.0) /* Result is Infinity. */ - { - /* Infinity exponent is same as NaN's. */ - put_field (uto, order, fmt->totalsize, fmt->exp_start, - fmt->exp_len, fmt->exp_nan); - /* Infinity mantissa is all zeroes. */ - put_field (uto, order, fmt->totalsize, fmt->man_start, - fmt->man_len, 0); - goto finalize_byteorder; - } - -#ifdef HAVE_LONG_DOUBLE - mant = frexpl (dfrom, &exponent); -#else - mant = frexp (dfrom, &exponent); -#endif - - if (exponent + fmt->exp_bias <= 0) - { - /* The value is too small to be expressed in the destination - type (not enough bits in the exponent. Treat as 0. */ - put_field (uto, order, fmt->totalsize, fmt->exp_start, - fmt->exp_len, 0); - put_field (uto, order, fmt->totalsize, fmt->man_start, - fmt->man_len, 0); - goto finalize_byteorder; - } - - if (exponent + fmt->exp_bias >= (1 << fmt->exp_len)) - { - /* The value is too large to fit into the destination. - Treat as infinity. */ - put_field (uto, order, fmt->totalsize, fmt->exp_start, - fmt->exp_len, fmt->exp_nan); - put_field (uto, order, fmt->totalsize, fmt->man_start, - fmt->man_len, 0); - goto finalize_byteorder; - } - - put_field (uto, order, fmt->totalsize, fmt->exp_start, fmt->exp_len, - exponent + fmt->exp_bias - 1); - - mant_bits_left = fmt->man_len; - mant_off = fmt->man_start; - while (mant_bits_left > 0) - { - unsigned long mant_long; - - mant_bits = mant_bits_left < 32 ? mant_bits_left : 32; - - mant *= 4294967296.0; - mant_long = ((unsigned long) mant) & 0xffffffffL; - mant -= mant_long; - - /* If the integer bit is implicit, then we need to discard it. - If we are discarding a zero, we should be (but are not) creating - a denormalized number which means adjusting the exponent - (I think). */ - if (mant_bits_left == fmt->man_len - && fmt->intbit == floatformat_intbit_no) - { - mant_long <<= 1; - mant_long &= 0xffffffffL; - /* If we are processing the top 32 mantissa bits of a doublest - so as to convert to a float value with implied integer bit, - we will only be putting 31 of those 32 bits into the - final value due to the discarding of the top bit. In the - case of a small float value where the number of mantissa - bits is less than 32, discarding the top bit does not alter - the number of bits we will be adding to the result. */ - if (mant_bits == 32) - mant_bits -= 1; - } - - if (mant_bits < 32) - { - /* The bits we want are in the most significant MANT_BITS bits of - mant_long. Move them to the least significant. */ - mant_long >>= 32 - mant_bits; - } - - put_field (uto, order, fmt->totalsize, - mant_off, mant_bits, mant_long); - mant_off += mant_bits; - mant_bits_left -= mant_bits; - } - - finalize_byteorder: - /* Do we need to byte-swap the words in the result? */ - if (order != fmt->byteorder) - floatformat_normalize_byteorder (fmt, newto, to); -} - -/* Check if VAL (which is assumed to be a floating point number whose - format is described by FMT) is negative. */ - -int -floatformat_is_negative (const struct floatformat *fmt, - const bfd_byte *uval) -{ - enum floatformat_byteorders order; - unsigned char newfrom[FLOATFORMAT_LARGEST_BYTES]; - - gdb_assert (fmt != NULL); - gdb_assert (fmt->totalsize - <= FLOATFORMAT_LARGEST_BYTES * FLOATFORMAT_CHAR_BIT); - - /* An IBM long double (a two element array of double) always takes the - sign of the first double. */ - if (fmt->split_half) - fmt = fmt->split_half; - - order = floatformat_normalize_byteorder (fmt, uval, newfrom); - - if (order != fmt->byteorder) - uval = newfrom; - - return get_field (uval, order, fmt->totalsize, fmt->sign_start, 1); -} - -/* Check if VAL is "not a number" (NaN) for FMT. */ - -enum float_kind -floatformat_classify (const struct floatformat *fmt, - const bfd_byte *uval) -{ - long exponent; - unsigned long mant; - unsigned int mant_bits, mant_off; - int mant_bits_left; - enum floatformat_byteorders order; - unsigned char newfrom[FLOATFORMAT_LARGEST_BYTES]; - int mant_zero; - - gdb_assert (fmt != NULL); - gdb_assert (fmt->totalsize - <= FLOATFORMAT_LARGEST_BYTES * FLOATFORMAT_CHAR_BIT); - - /* An IBM long double (a two element array of double) can be classified - by looking at the first double. inf and nan are specified as - ignoring the second double. zero and subnormal will always have - the second double 0.0 if the long double is correctly rounded. */ - if (fmt->split_half) - fmt = fmt->split_half; - - order = floatformat_normalize_byteorder (fmt, uval, newfrom); - - if (order != fmt->byteorder) - uval = newfrom; - - exponent = get_field (uval, order, fmt->totalsize, fmt->exp_start, - fmt->exp_len); - - mant_bits_left = fmt->man_len; - mant_off = fmt->man_start; - - mant_zero = 1; - while (mant_bits_left > 0) - { - mant_bits = std::min (mant_bits_left, 32); - - mant = get_field (uval, order, fmt->totalsize, mant_off, mant_bits); - - /* If there is an explicit integer bit, mask it off. */ - if (mant_off == fmt->man_start - && fmt->intbit == floatformat_intbit_yes) - mant &= ~(1 << (mant_bits - 1)); - - if (mant) - { - mant_zero = 0; - break; - } - - mant_off += mant_bits; - mant_bits_left -= mant_bits; - } - - /* If exp_nan is not set, assume that inf, NaN, and subnormals are not - supported. */ - if (! fmt->exp_nan) - { - if (mant_zero) - return float_zero; - else - return float_normal; - } - - if (exponent == 0) - { - if (mant_zero) - return float_zero; - else - return float_subnormal; - } - - if (exponent == fmt->exp_nan) - { - if (mant_zero) - return float_infinite; - else - return float_nan; - } - - return float_normal; -} - -/* Convert the mantissa of VAL (which is assumed to be a floating - point number whose format is described by FMT) into a hexadecimal - and store it in a static string. Return a pointer to that string. */ - -const char * -floatformat_mantissa (const struct floatformat *fmt, - const bfd_byte *val) -{ - unsigned char *uval = (unsigned char *) val; - unsigned long mant; - unsigned int mant_bits, mant_off; - int mant_bits_left; - static char res[50]; - char buf[9]; - int len; - enum floatformat_byteorders order; - unsigned char newfrom[FLOATFORMAT_LARGEST_BYTES]; - - gdb_assert (fmt != NULL); - gdb_assert (fmt->totalsize - <= FLOATFORMAT_LARGEST_BYTES * FLOATFORMAT_CHAR_BIT); - - /* For IBM long double (a two element array of double), return the - mantissa of the first double. The problem with returning the - actual mantissa from both doubles is that there can be an - arbitrary number of implied 0's or 1's between the mantissas - of the first and second double. In any case, this function - is only used for dumping out nans, and a nan is specified to - ignore the value in the second double. */ - if (fmt->split_half) - fmt = fmt->split_half; - - order = floatformat_normalize_byteorder (fmt, uval, newfrom); - - if (order != fmt->byteorder) - uval = newfrom; - - if (! fmt->exp_nan) - return 0; - - /* Make sure we have enough room to store the mantissa. */ - gdb_assert (sizeof res > ((fmt->man_len + 7) / 8) * 2); - - mant_off = fmt->man_start; - mant_bits_left = fmt->man_len; - mant_bits = (mant_bits_left % 32) > 0 ? mant_bits_left % 32 : 32; - - mant = get_field (uval, order, fmt->totalsize, mant_off, mant_bits); - - len = xsnprintf (res, sizeof res, "%lx", mant); - - mant_off += mant_bits; - mant_bits_left -= mant_bits; - - while (mant_bits_left > 0) - { - mant = get_field (uval, order, fmt->totalsize, mant_off, 32); - - xsnprintf (buf, sizeof buf, "%08lx", mant); - gdb_assert (len + strlen (buf) <= sizeof res); - strcat (res, buf); - - mant_off += 32; - mant_bits_left -= 32; - } - - return res; -} - -/* Return the precision of the floating point format FMT. */ - -static int -floatformat_precision (const struct floatformat *fmt) -{ - /* Assume the precision of and IBM long double is twice the precision - of the underlying double. This matches what GCC does. */ - if (fmt->split_half) - return 2 * floatformat_precision (fmt->split_half); - - /* Otherwise, the precision is the size of mantissa in bits, - including the implicit bit if present. */ - int prec = fmt->man_len; - if (fmt->intbit == floatformat_intbit_no) - prec++; - - return prec; -} - - -/* Convert TO/FROM target to the hosts DOUBLEST floating-point format. - - If the host and target formats agree, we just copy the raw data - into the appropriate type of variable and return, letting the host - increase precision as necessary. Otherwise, we call the conversion - routine and let it do the dirty work. Note that even if the target - and host floating-point formats match, the length of the types - might still be different, so the conversion routines must make sure - to not overrun any buffers. For example, on x86, long double is - the 80-bit extended precision type on both 32-bit and 64-bit ABIs, - but by default it is stored as 12 bytes on 32-bit, and 16 bytes on - 64-bit, for alignment reasons. See comment in store_typed_floating - for a discussion about zeroing out remaining bytes in the target - buffer. */ - -static const struct floatformat *host_float_format = GDB_HOST_FLOAT_FORMAT; -static const struct floatformat *host_double_format = GDB_HOST_DOUBLE_FORMAT; -static const struct floatformat *host_long_double_format - = GDB_HOST_LONG_DOUBLE_FORMAT; - -/* See doublest.h. */ - -size_t -floatformat_totalsize_bytes (const struct floatformat *fmt) -{ - return ((fmt->totalsize + FLOATFORMAT_CHAR_BIT - 1) - / FLOATFORMAT_CHAR_BIT); -} - -void -floatformat_to_doublest (const struct floatformat *fmt, - const void *in, DOUBLEST *out) -{ - gdb_assert (fmt != NULL); - - if (fmt == host_float_format) - { - float val = 0; - - memcpy (&val, in, floatformat_totalsize_bytes (fmt)); - *out = val; - } - else if (fmt == host_double_format) - { - double val = 0; - - memcpy (&val, in, floatformat_totalsize_bytes (fmt)); - *out = val; - } - else if (fmt == host_long_double_format) - { - long double val = 0; - - memcpy (&val, in, floatformat_totalsize_bytes (fmt)); - *out = val; - } - else - convert_floatformat_to_doublest (fmt, in, out); -} - -void -floatformat_from_doublest (const struct floatformat *fmt, - const DOUBLEST *in, void *out) -{ - gdb_assert (fmt != NULL); - - if (fmt == host_float_format) - { - float val = *in; - - memcpy (out, &val, floatformat_totalsize_bytes (fmt)); - } - else if (fmt == host_double_format) - { - double val = *in; - - memcpy (out, &val, floatformat_totalsize_bytes (fmt)); - } - else if (fmt == host_long_double_format) - { - long double val = *in; - - memcpy (out, &val, floatformat_totalsize_bytes (fmt)); - } - else - convert_doublest_to_floatformat (fmt, in, out); -} - -/* Convert the byte-stream ADDR, interpreted as floating-point format FMT, - to a string, optionally using the print format FORMAT. */ -std::string -floatformat_to_string (const struct floatformat *fmt, - const gdb_byte *in, const char *format) -{ - /* Unless we need to adhere to a specific format, provide special - output for certain cases. */ - if (format == nullptr) - { - /* Detect invalid representations. */ - if (!floatformat_is_valid (fmt, in)) - return ""; - - /* Handle NaN and Inf. */ - enum float_kind kind = floatformat_classify (fmt, in); - if (kind == float_nan) - { - const char *sign = floatformat_is_negative (fmt, in)? "-" : ""; - const char *mantissa = floatformat_mantissa (fmt, in); - return string_printf ("%snan(0x%s)", sign, mantissa); - } - else if (kind == float_infinite) - { - const char *sign = floatformat_is_negative (fmt, in)? "-" : ""; - return string_printf ("%sinf", sign); - } - } - - /* Determine the format string to use on the host side. */ - std::string host_format; - char conversion; - - if (format == nullptr) - { - /* If no format was specified, print the number using a format string - where the precision is set to the DECIMAL_DIG value for the given - floating-point format. This value is computed as - - ceil(1 + p * log10(b)), - - where p is the precision of the floating-point format in bits, and - b is the base (which is always 2 for the formats we support). */ - const double log10_2 = .30102999566398119521; - double d_decimal_dig = 1 + floatformat_precision (fmt) * log10_2; - int decimal_dig = d_decimal_dig; - if (decimal_dig < d_decimal_dig) - decimal_dig++; - - host_format = string_printf ("%%.%d", decimal_dig); - conversion = 'g'; - } - else - { - /* Use the specified format, stripping out the conversion character - and length modifier, if present. */ - size_t len = strlen (format); - gdb_assert (len > 1); - conversion = format[--len]; - gdb_assert (conversion == 'e' || conversion == 'f' || conversion == 'g' - || conversion == 'E' || conversion == 'G'); - if (format[len - 1] == 'L') - len--; - - host_format = std::string (format, len); - } - - /* Add the length modifier and conversion character appropriate for - handling the host DOUBLEST type. */ -#ifdef HAVE_LONG_DOUBLE - host_format += 'L'; -#endif - host_format += conversion; - - DOUBLEST doub; - floatformat_to_doublest (fmt, in, &doub); - return string_printf (host_format.c_str (), doub); -} - -/* Parse string STRING into a target floating-number of format FMT and - store it as byte-stream ADDR. Return whether parsing succeeded. */ -bool -floatformat_from_string (const struct floatformat *fmt, gdb_byte *out, - const std::string &in) -{ - DOUBLEST doub; - int n, num; -#ifdef HAVE_LONG_DOUBLE - const char *scan_format = "%Lg%n"; -#else - const char *scan_format = "%lg%n"; -#endif - num = sscanf (in.c_str (), scan_format, &doub, &n); - - /* The sscanf man page suggests not making any assumptions on the effect - of %n on the result, so we don't. - That is why we simply test num == 0. */ - if (num == 0) - return false; - - /* We only accept the whole string. */ - if (in[n]) - return false; - - floatformat_from_doublest (fmt, &doub, out); - return true; -} Index: binutils-gdb/gdb/doublest.h =================================================================== --- binutils-gdb.orig/gdb/doublest.h +++ /dev/null @@ -1,79 +0,0 @@ -/* Floating point definitions for GDB. - - Copyright (C) 1986-2017 Free Software Foundation, Inc. - - This file is part of GDB. - - This program is free software; you can redistribute it and/or modify - it under the terms of the GNU General Public License as published by - the Free Software Foundation; either version 3 of the License, or - (at your option) any later version. - - This program is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - GNU General Public License for more details. - - You should have received a copy of the GNU General Public License - along with this program. If not, see . */ - -#ifndef DOUBLEST_H -#define DOUBLEST_H - -struct floatformat; - -/* Use `long double' if the host compiler supports it. (Note that this is not - necessarily any longer than `double'. On SunOS/gcc, it's the same as - double.) This is necessary because GDB internally converts all floating - point values to the widest type supported by the host. - - There are problems however, when the target `long double' is longer than the - host's `long double'. In general, we'll probably reduce the precision of - any such values and print a warning. */ - -#if (defined HAVE_LONG_DOUBLE && defined PRINTF_HAS_LONG_DOUBLE \ - && defined SCANF_HAS_LONG_DOUBLE) -typedef long double DOUBLEST; -#else -typedef double DOUBLEST; -/* If we can't scan or print long double, we don't want to use it - anywhere. */ -# undef HAVE_LONG_DOUBLE -# undef PRINTF_HAS_LONG_DOUBLE -# undef SCANF_HAS_LONG_DOUBLE -#endif - -/* Different kinds of floatformat numbers recognized by - floatformat_classify. To avoid portability issues, we use local - values instead of the C99 macros (FP_NAN et cetera). */ -enum float_kind { - float_nan, - float_infinite, - float_zero, - float_normal, - float_subnormal -}; - -extern void floatformat_to_doublest (const struct floatformat *, - const void *in, DOUBLEST *out); -extern void floatformat_from_doublest (const struct floatformat *, - const DOUBLEST *in, void *out); - -extern int floatformat_is_negative (const struct floatformat *, - const bfd_byte *); -extern enum float_kind floatformat_classify (const struct floatformat *, - const bfd_byte *); -extern const char *floatformat_mantissa (const struct floatformat *, - const bfd_byte *); - -extern std::string floatformat_to_string (const struct floatformat *fmt, - const gdb_byte *in, - const char *format = nullptr); -extern bool floatformat_from_string (const struct floatformat *fmt, - gdb_byte *out, const std::string &in); - -/* Return the floatformat's total size in host bytes. */ - -extern size_t floatformat_totalsize_bytes (const struct floatformat *fmt); - -#endif