From patchwork Tue Jan 9 12:01:42 2018 Content-Type: text/plain; charset="utf-8" MIME-Version: 1.0 Content-Transfer-Encoding: 7bit X-Patchwork-Submitter: Philipp Rudo X-Patchwork-Id: 25294 Received: (qmail 65616 invoked by alias); 9 Jan 2018 12:02:40 -0000 Mailing-List: contact gdb-patches-help@sourceware.org; run by ezmlm Precedence: bulk List-Id: List-Unsubscribe: List-Subscribe: List-Archive: List-Post: List-Help: , Sender: gdb-patches-owner@sourceware.org Delivered-To: mailing list gdb-patches@sourceware.org Received: (qmail 65303 invoked by uid 89); 9 Jan 2018 12:02:37 -0000 Authentication-Results: sourceware.org; auth=none X-Virus-Found: No X-Spam-SWARE-Status: No, score=-26.3 required=5.0 tests=AWL, BAYES_00, GIT_PATCH_0, GIT_PATCH_1, GIT_PATCH_2, GIT_PATCH_3, KAM_LAZY_DOMAIN_SECURITY, KAM_SHORT, RCVD_IN_DNSWL_LOW autolearn=ham version=3.3.2 spammy=Trust, UD:gr, m31, arrive X-HELO: mx0a-001b2d01.pphosted.com Received: from mx0b-001b2d01.pphosted.com (HELO mx0a-001b2d01.pphosted.com) (148.163.158.5) by sourceware.org (qpsmtpd/0.93/v0.84-503-g423c35a) with ESMTP; Tue, 09 Jan 2018 12:02:08 +0000 Received: from pps.filterd (m0098419.ppops.net [127.0.0.1]) by mx0b-001b2d01.pphosted.com (8.16.0.22/8.16.0.22) with SMTP id w09BxXbL134418 for ; Tue, 9 Jan 2018 07:02:06 -0500 Received: from e06smtp14.uk.ibm.com (e06smtp14.uk.ibm.com [195.75.94.110]) by mx0b-001b2d01.pphosted.com with ESMTP id 2fcu2yydas-1 (version=TLSv1.2 cipher=AES256-SHA bits=256 verify=NOT) for ; Tue, 09 Jan 2018 07:02:03 -0500 Received: from localhost by e06smtp14.uk.ibm.com with IBM ESMTP SMTP Gateway: Authorized Use Only! Violators will be prosecuted for from ; Tue, 9 Jan 2018 12:02:00 -0000 Received: from b06cxnps4076.portsmouth.uk.ibm.com (9.149.109.198) by e06smtp14.uk.ibm.com (192.168.101.144) with IBM ESMTP SMTP Gateway: Authorized Use Only! Violators will be prosecuted; Tue, 9 Jan 2018 12:01:58 -0000 Received: from d06av26.portsmouth.uk.ibm.com (d06av26.portsmouth.uk.ibm.com [9.149.105.62]) by b06cxnps4076.portsmouth.uk.ibm.com (8.14.9/8.14.9/NCO v10.0) with ESMTP id w09C1vA749414210; Tue, 9 Jan 2018 12:01:57 GMT Received: from d06av26.portsmouth.uk.ibm.com (unknown [127.0.0.1]) by IMSVA (Postfix) with ESMTP id B601EAE064; Tue, 9 Jan 2018 11:53:57 +0000 (GMT) Received: from d06av26.portsmouth.uk.ibm.com (unknown [127.0.0.1]) by IMSVA (Postfix) with ESMTP id 3FB0CAE059; Tue, 9 Jan 2018 11:53:57 +0000 (GMT) Received: from tuxmaker.boeblingen.de.ibm.com (unknown [9.152.85.9]) by d06av26.portsmouth.uk.ibm.com (Postfix) with ESMTPS; Tue, 9 Jan 2018 11:53:57 +0000 (GMT) From: Philipp Rudo To: gdb-patches@sourceware.org Cc: Andreas Arnez , Ulrich Weigand , Yao Qi Subject: [PATCH v4 09/11] s390: Split up s390-linux-tdep.c into two files Date: Tue, 9 Jan 2018 13:01:42 +0100 In-Reply-To: <20180109120144.93854-1-prudo@linux.vnet.ibm.com> References: <20180109120144.93854-1-prudo@linux.vnet.ibm.com> X-TM-AS-GCONF: 00 x-cbid: 18010912-0016-0000-0000-000005159AC1 X-IBM-AV-DETECTION: SAVI=unused REMOTE=unused XFE=unused x-cbparentid: 18010912-0017-0000-0000-00002851F45C Message-Id: <20180109120144.93854-10-prudo@linux.vnet.ibm.com> X-Proofpoint-Virus-Version: vendor=fsecure engine=2.50.10432:, , definitions=2018-01-09_06:, , signatures=0 X-Proofpoint-Spam-Details: rule=outbound_notspam policy=outbound score=0 priorityscore=1501 malwarescore=0 suspectscore=43 phishscore=0 bulkscore=0 spamscore=0 clxscore=1015 lowpriorityscore=0 impostorscore=0 adultscore=0 classifier=spam adjust=0 reason=mlx scancount=1 engine=8.0.1-1709140000 definitions=main-1801090169 X-IsSubscribed: yes Currently all target dependent code for s390 is in one file (s390-linux-tdep.c). This includes code general for the architecture as well as code specific for uses in GNU/Linux (user space). Up until now this was ok as GNU/Linux was the only supported OS. In preparation to support the new Linux kernel 'OS' split up the existing s390 code into a general s390-tdep and a GNU/Linux specific s390-linux-tdep. Note: The record-replay feature will be moved in a separate patch. This is simply due to the fact that the combined patch would be too large for the mailing list. This requires setting the process_record hook during OSABI init to keep the code bisectable. The patch moving record-replay cleans up this hack. gdb/ChangeLog: * s390-tdep.h: New file. * s390-tdep.c: New file. * s390-linux-nat.c (s390-tdep.h): new include. * Makefile.in (ALL_TARGET_OBS): Add s390-tdep.o. (HFILES_NO_SRCDIR): Add s390-tdep.h. (ALLDEPFILES): Add s390-tdep.c. * configure.tgt (s390*-*-linux*): Add s390-tdep.o. * s390-linux-tdep.h (HWCAP_S390_*) (S390_*_REGNUM): Move to s390-tdep.h * s390-linux-tdep.c (s390-tdep.h): New include. (_initialize_s390_tdep): Rename to... (_initialize_s390_linux_tdep): ...this and adjust. (s390_abi_kind, s390_vector_abi_kind, gdbarch_tdep) (enum named opcodes, (S390_NUM_GPRS) (S390_NUM_FPRS): Move to s390-tdep.h (s390_readinstruction, is_ri, is_ril, is_rr, is_rre, is_rs, is_rsy) (is_rx, is_rxy, s390_break_insn, s390_breakpoint) (s390_is_partial_instruction, s390_software_single_step) (is_non_branch_ril, s390_displaced_step_copy_insn) (s390_displaced_step_fixup, s390_displaced_step_hw_singlestep) (s390_addr, s390_store, s390_load, s390_check_for_saved) (s390_prologue_data, s390_analyze_prologue, s390_skip_prologue) (s390_register_call_saved, s390_guess_tracepoint_registers) (s390_register_name, s390_dwarf_regmap, s390_dwarf_reg_to_regnum) (regnum_is_gpr_full, regnum_is_vxr_full, s390_value_from_register) (s390_pseudo_register_name, s390_pseudo_register_type) (s390_pseudo_register_read, s390_pseudo_register_write) (s390_pseudo_register_reggroup_p, s390_ax_pseudo_register_collect) (s390_ax_pseudo_register_push_stack, s390_gen_return_address) (s390_addr_bits_remove, s390_address_class_type_flags) (s390_address_class_type_flags_to_name) (s390_address_class_name_to_type_flags, s390_effective_inner_type) (s390_function_arg_float, s390_function_arg_vector) (is_power_of_two, s390_function_arg_integer, s390_arg_state) (s390_handle_arg, s390_push_dummy_call, s390_dummy_id) (s390_frame_align, s390_register_return_value, s390_return_value) (s390_stack_frame_destroyed_p, s390_unwind_pc, s390_unwind_sp) (s390_unwind_pseudo_register, s390_adjust_frame_regnum) (s390_dwarf2_prev_register, s390_dwarf2_frame_init_reg) (s390_trad_frame_prev_register, s390_unwind_cache) (s390_prologue_frame_unwind_cache) (s390_backchain_frame_unwind_cache) (s390_frame_unwind_cache, s390_frame_this_id) (s390_frame_prev_register, s390_frame_unwind) (s390_stub_unwind_cache, s390_stub_frame_unwind_cache) (s390_stub_frame_this_id, s390_stub_frame_prev_register) (s390_stub_frame_sniffer, s390_stub_frame_unwind) (s390_frame_base_address, s390_local_base_address, s390_frame_base) (s390_gcc_target_options, s390_gnu_triplet_regexp) (s390_stap_is_single_operand, s390_validate_reg_range) (s390_tdesc_valid, s390_gdbarch_tdep_alloc) (s390_gdbarch_init): Move to s390-tdep.c --- gdb/Makefile.in | 3 + gdb/configure.tgt | 4 +- gdb/s390-linux-nat.c | 1 + gdb/s390-linux-tdep.c | 3157 +----------------------------------------------- gdb/s390-linux-tdep.h | 176 +-- gdb/s390-tdep.c | 3160 +++++++++++++++++++++++++++++++++++++++++++++++++ gdb/s390-tdep.h | 318 +++++ 7 files changed, 3496 insertions(+), 3323 deletions(-) create mode 100644 gdb/s390-tdep.c create mode 100644 gdb/s390-tdep.h diff --git a/gdb/Makefile.in b/gdb/Makefile.in index 17b71c6e7c..f48c1777cb 100644 --- a/gdb/Makefile.in +++ b/gdb/Makefile.in @@ -754,6 +754,7 @@ ALL_TARGET_OBS = \ rs6000-tdep.o \ rx-tdep.o \ s390-linux-tdep.o \ + s390-tdep.o \ score-tdep.o \ sh-linux-tdep.o \ sh-nbsd-tdep.o \ @@ -1329,6 +1330,7 @@ HFILES_NO_SRCDIR = \ rs6000-aix-tdep.h \ rs6000-tdep.h \ s390-linux-tdep.h \ + s390-tdep.h \ score-tdep.h \ selftest-arch.h \ sentinel-frame.h \ @@ -2328,6 +2330,7 @@ ALLDEPFILES = \ rx-tdep.c \ s390-linux-nat.c \ s390-linux-tdep.c \ + s390-tdep.c \ score-tdep.c \ ser-go32.c \ ser-mingw.c \ diff --git a/gdb/configure.tgt b/gdb/configure.tgt index fb8014a8e8..ca13f54c9d 100644 --- a/gdb/configure.tgt +++ b/gdb/configure.tgt @@ -519,8 +519,8 @@ powerpc*-*-*) s390*-*-linux*) # Target: S390 running Linux - gdb_target_obs="s390-linux-tdep.o solib-svr4.o linux-tdep.o \ - linux-record.o symfile-mem.o" + gdb_target_obs="s390-linux-tdep.o s390-tdep.o solib-svr4.o \ + linux-tdep.o linux-record.o symfile-mem.o" build_gdbserver=yes ;; diff --git a/gdb/s390-linux-nat.c b/gdb/s390-linux-nat.c index 8a3fcff9b6..14086faaa0 100644 --- a/gdb/s390-linux-nat.c +++ b/gdb/s390-linux-nat.c @@ -30,6 +30,7 @@ #include "nat/linux-ptrace.h" #include "gdbcmd.h" +#include "s390-tdep.h" #include "s390-linux-tdep.h" #include "elf/common.h" diff --git a/gdb/s390-linux-tdep.c b/gdb/s390-linux-tdep.c index 81f3e75417..f6d2b62cbb 100644 --- a/gdb/s390-linux-tdep.c +++ b/gdb/s390-linux-tdep.c @@ -1,4 +1,4 @@ -/* Target-dependent code for GDB, the GNU debugger. +/* Target-dependent code for GNU/Linux on s390. Copyright (C) 2001-2018 Free Software Foundation, Inc. @@ -43,6 +43,7 @@ #include "solib-svr4.h" #include "prologue-value.h" #include "linux-tdep.h" +#include "s390-tdep.h" #include "s390-linux-tdep.h" #include "linux-record.h" #include "record-full.h" @@ -81,82 +82,6 @@ #define XML_SYSCALL_FILENAME_S390 "syscalls/s390-linux.xml" #define XML_SYSCALL_FILENAME_S390X "syscalls/s390x-linux.xml" -/* Holds the current set of options to be passed to the disassembler. */ -static char *s390_disassembler_options; - -enum s390_abi_kind -{ - ABI_NONE, - ABI_LINUX_S390, - ABI_LINUX_ZSERIES -}; - -enum s390_vector_abi_kind -{ - S390_VECTOR_ABI_NONE, - S390_VECTOR_ABI_128 -}; - -/* The tdep structure. */ - -struct gdbarch_tdep -{ - /* Target description. */ - const struct target_desc *tdesc; - - /* ABI version. */ - enum s390_abi_kind abi; - - /* Vector ABI. */ - enum s390_vector_abi_kind vector_abi; - - /* Pseudo register numbers. */ - int gpr_full_regnum; - int pc_regnum; - int cc_regnum; - int v0_full_regnum; - - bool have_upper; - bool have_linux_v1; - bool have_linux_v2; - bool have_tdb; - bool have_vx; - bool have_gs; - - /* Hook to record OS specific systemcall. */ - int (*s390_syscall_record) (struct regcache *regcache, LONGEST svc_number); -}; - - -/* ABI call-saved register information. */ - -static int -s390_register_call_saved (struct gdbarch *gdbarch, int regnum) -{ - struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); - - switch (tdep->abi) - { - case ABI_LINUX_S390: - if ((regnum >= S390_R6_REGNUM && regnum <= S390_R15_REGNUM) - || regnum == S390_F4_REGNUM || regnum == S390_F6_REGNUM - || regnum == S390_A0_REGNUM) - return 1; - - break; - - case ABI_LINUX_ZSERIES: - if ((regnum >= S390_R6_REGNUM && regnum <= S390_R15_REGNUM) - || (regnum >= S390_F8_REGNUM && regnum <= S390_F15_REGNUM) - || (regnum >= S390_A0_REGNUM && regnum <= S390_A1_REGNUM)) - return 1; - - break; - } - - return 0; -} - static int s390_cannot_store_register (struct gdbarch *gdbarch, int regnum) { @@ -183,602 +108,6 @@ s390_write_pc (struct regcache *regcache, CORE_ADDR pc) regcache_cooked_write_unsigned (regcache, S390_SYSTEM_CALL_REGNUM, 0); } -/* The "guess_tracepoint_registers" gdbarch method. */ - -static void -s390_guess_tracepoint_registers (struct gdbarch *gdbarch, - struct regcache *regcache, - CORE_ADDR addr) -{ - struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); - int sz = register_size (gdbarch, S390_PSWA_REGNUM); - gdb_byte *reg = (gdb_byte *) alloca (sz); - ULONGEST pswm, pswa; - - /* Set PSWA from the location and a default PSWM (the only part we're - unlikely to get right is the CC). */ - if (tdep->abi == ABI_LINUX_S390) - { - /* 31-bit PSWA needs high bit set (it's very unlikely the target - was in 24-bit mode). */ - pswa = addr | 0x80000000UL; - pswm = 0x070d0000UL; - } - else - { - pswa = addr; - pswm = 0x0705000180000000ULL; - } - - store_unsigned_integer (reg, sz, gdbarch_byte_order (gdbarch), pswa); - regcache_raw_supply (regcache, S390_PSWA_REGNUM, reg); - - store_unsigned_integer (reg, sz, gdbarch_byte_order (gdbarch), pswm); - regcache_raw_supply (regcache, S390_PSWM_REGNUM, reg); -} - - -/* DWARF Register Mapping. */ - -static const short s390_dwarf_regmap[] = -{ - /* 0-15: General Purpose Registers. */ - S390_R0_REGNUM, S390_R1_REGNUM, S390_R2_REGNUM, S390_R3_REGNUM, - S390_R4_REGNUM, S390_R5_REGNUM, S390_R6_REGNUM, S390_R7_REGNUM, - S390_R8_REGNUM, S390_R9_REGNUM, S390_R10_REGNUM, S390_R11_REGNUM, - S390_R12_REGNUM, S390_R13_REGNUM, S390_R14_REGNUM, S390_R15_REGNUM, - - /* 16-31: Floating Point Registers / Vector Registers 0-15. */ - S390_F0_REGNUM, S390_F2_REGNUM, S390_F4_REGNUM, S390_F6_REGNUM, - S390_F1_REGNUM, S390_F3_REGNUM, S390_F5_REGNUM, S390_F7_REGNUM, - S390_F8_REGNUM, S390_F10_REGNUM, S390_F12_REGNUM, S390_F14_REGNUM, - S390_F9_REGNUM, S390_F11_REGNUM, S390_F13_REGNUM, S390_F15_REGNUM, - - /* 32-47: Control Registers (not mapped). */ - -1, -1, -1, -1, -1, -1, -1, -1, - -1, -1, -1, -1, -1, -1, -1, -1, - - /* 48-63: Access Registers. */ - S390_A0_REGNUM, S390_A1_REGNUM, S390_A2_REGNUM, S390_A3_REGNUM, - S390_A4_REGNUM, S390_A5_REGNUM, S390_A6_REGNUM, S390_A7_REGNUM, - S390_A8_REGNUM, S390_A9_REGNUM, S390_A10_REGNUM, S390_A11_REGNUM, - S390_A12_REGNUM, S390_A13_REGNUM, S390_A14_REGNUM, S390_A15_REGNUM, - - /* 64-65: Program Status Word. */ - S390_PSWM_REGNUM, - S390_PSWA_REGNUM, - - /* 66-67: Reserved. */ - -1, -1, - - /* 68-83: Vector Registers 16-31. */ - S390_V16_REGNUM, S390_V18_REGNUM, S390_V20_REGNUM, S390_V22_REGNUM, - S390_V17_REGNUM, S390_V19_REGNUM, S390_V21_REGNUM, S390_V23_REGNUM, - S390_V24_REGNUM, S390_V26_REGNUM, S390_V28_REGNUM, S390_V30_REGNUM, - S390_V25_REGNUM, S390_V27_REGNUM, S390_V29_REGNUM, S390_V31_REGNUM, - - /* End of "official" DWARF registers. The remainder of the map is - for GDB internal use only. */ - - /* GPR Lower Half Access. */ - S390_R0_REGNUM, S390_R1_REGNUM, S390_R2_REGNUM, S390_R3_REGNUM, - S390_R4_REGNUM, S390_R5_REGNUM, S390_R6_REGNUM, S390_R7_REGNUM, - S390_R8_REGNUM, S390_R9_REGNUM, S390_R10_REGNUM, S390_R11_REGNUM, - S390_R12_REGNUM, S390_R13_REGNUM, S390_R14_REGNUM, S390_R15_REGNUM, -}; - -enum { s390_dwarf_reg_r0l = ARRAY_SIZE (s390_dwarf_regmap) - 16 }; - -/* Convert DWARF register number REG to the appropriate register - number used by GDB. */ -static int -s390_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg) -{ - struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); - int gdb_reg = -1; - - /* In a 32-on-64 debug scenario, debug info refers to the full - 64-bit GPRs. Note that call frame information still refers to - the 32-bit lower halves, because s390_adjust_frame_regnum uses - special register numbers to access GPRs. */ - if (tdep->gpr_full_regnum != -1 && reg >= 0 && reg < 16) - return tdep->gpr_full_regnum + reg; - - if (reg >= 0 && reg < ARRAY_SIZE (s390_dwarf_regmap)) - gdb_reg = s390_dwarf_regmap[reg]; - - if (tdep->v0_full_regnum == -1) - { - if (gdb_reg >= S390_V16_REGNUM && gdb_reg <= S390_V31_REGNUM) - gdb_reg = -1; - } - else - { - if (gdb_reg >= S390_F0_REGNUM && gdb_reg <= S390_F15_REGNUM) - gdb_reg = gdb_reg - S390_F0_REGNUM + tdep->v0_full_regnum; - } - - return gdb_reg; -} - -/* Translate a .eh_frame register to DWARF register, or adjust a - .debug_frame register. */ -static int -s390_adjust_frame_regnum (struct gdbarch *gdbarch, int num, int eh_frame_p) -{ - /* See s390_dwarf_reg_to_regnum for comments. */ - return (num >= 0 && num < 16) ? num + s390_dwarf_reg_r0l : num; -} - - -/* Pseudo registers. */ - -static int -regnum_is_gpr_full (struct gdbarch_tdep *tdep, int regnum) -{ - return (tdep->gpr_full_regnum != -1 - && regnum >= tdep->gpr_full_regnum - && regnum <= tdep->gpr_full_regnum + 15); -} - -/* Check whether REGNUM indicates a full vector register (v0-v15). - These pseudo-registers are composed of f0-f15 and v0l-v15l. */ - -static int -regnum_is_vxr_full (struct gdbarch_tdep *tdep, int regnum) -{ - return (tdep->v0_full_regnum != -1 - && regnum >= tdep->v0_full_regnum - && regnum <= tdep->v0_full_regnum + 15); -} - -/* Return the name of register REGNO. Return the empty string for - registers that shouldn't be visible. */ - -static const char * -s390_register_name (struct gdbarch *gdbarch, int regnum) -{ - if (regnum >= S390_V0_LOWER_REGNUM - && regnum <= S390_V15_LOWER_REGNUM) - return ""; - return tdesc_register_name (gdbarch, regnum); -} - -static const char * -s390_pseudo_register_name (struct gdbarch *gdbarch, int regnum) -{ - struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); - - if (regnum == tdep->pc_regnum) - return "pc"; - - if (regnum == tdep->cc_regnum) - return "cc"; - - if (regnum_is_gpr_full (tdep, regnum)) - { - static const char *full_name[] = { - "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", - "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15" - }; - return full_name[regnum - tdep->gpr_full_regnum]; - } - - if (regnum_is_vxr_full (tdep, regnum)) - { - static const char *full_name[] = { - "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", - "v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15" - }; - return full_name[regnum - tdep->v0_full_regnum]; - } - - internal_error (__FILE__, __LINE__, _("invalid regnum")); -} - -static struct type * -s390_pseudo_register_type (struct gdbarch *gdbarch, int regnum) -{ - struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); - - if (regnum == tdep->pc_regnum) - return builtin_type (gdbarch)->builtin_func_ptr; - - if (regnum == tdep->cc_regnum) - return builtin_type (gdbarch)->builtin_int; - - if (regnum_is_gpr_full (tdep, regnum)) - return builtin_type (gdbarch)->builtin_uint64; - - if (regnum_is_vxr_full (tdep, regnum)) - return tdesc_find_type (gdbarch, "vec128"); - - internal_error (__FILE__, __LINE__, _("invalid regnum")); -} - -static enum register_status -s390_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache, - int regnum, gdb_byte *buf) -{ - struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); - enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); - int regsize = register_size (gdbarch, regnum); - ULONGEST val; - - if (regnum == tdep->pc_regnum) - { - enum register_status status; - - status = regcache_raw_read_unsigned (regcache, S390_PSWA_REGNUM, &val); - if (status == REG_VALID) - { - if (register_size (gdbarch, S390_PSWA_REGNUM) == 4) - val &= 0x7fffffff; - store_unsigned_integer (buf, regsize, byte_order, val); - } - return status; - } - - if (regnum == tdep->cc_regnum) - { - enum register_status status; - - status = regcache_raw_read_unsigned (regcache, S390_PSWM_REGNUM, &val); - if (status == REG_VALID) - { - if (register_size (gdbarch, S390_PSWA_REGNUM) == 4) - val = (val >> 12) & 3; - else - val = (val >> 44) & 3; - store_unsigned_integer (buf, regsize, byte_order, val); - } - return status; - } - - if (regnum_is_gpr_full (tdep, regnum)) - { - enum register_status status; - ULONGEST val_upper; - - regnum -= tdep->gpr_full_regnum; - - status = regcache_raw_read_unsigned (regcache, S390_R0_REGNUM + regnum, &val); - if (status == REG_VALID) - status = regcache_raw_read_unsigned (regcache, S390_R0_UPPER_REGNUM + regnum, - &val_upper); - if (status == REG_VALID) - { - val |= val_upper << 32; - store_unsigned_integer (buf, regsize, byte_order, val); - } - return status; - } - - if (regnum_is_vxr_full (tdep, regnum)) - { - enum register_status status; - - regnum -= tdep->v0_full_regnum; - - status = regcache_raw_read (regcache, S390_F0_REGNUM + regnum, buf); - if (status == REG_VALID) - status = regcache_raw_read (regcache, - S390_V0_LOWER_REGNUM + regnum, buf + 8); - return status; - } - - internal_error (__FILE__, __LINE__, _("invalid regnum")); -} - -static void -s390_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache, - int regnum, const gdb_byte *buf) -{ - struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); - enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); - int regsize = register_size (gdbarch, regnum); - ULONGEST val, psw; - - if (regnum == tdep->pc_regnum) - { - val = extract_unsigned_integer (buf, regsize, byte_order); - if (register_size (gdbarch, S390_PSWA_REGNUM) == 4) - { - regcache_raw_read_unsigned (regcache, S390_PSWA_REGNUM, &psw); - val = (psw & 0x80000000) | (val & 0x7fffffff); - } - regcache_raw_write_unsigned (regcache, S390_PSWA_REGNUM, val); - return; - } - - if (regnum == tdep->cc_regnum) - { - val = extract_unsigned_integer (buf, regsize, byte_order); - regcache_raw_read_unsigned (regcache, S390_PSWM_REGNUM, &psw); - if (register_size (gdbarch, S390_PSWA_REGNUM) == 4) - val = (psw & ~((ULONGEST)3 << 12)) | ((val & 3) << 12); - else - val = (psw & ~((ULONGEST)3 << 44)) | ((val & 3) << 44); - regcache_raw_write_unsigned (regcache, S390_PSWM_REGNUM, val); - return; - } - - if (regnum_is_gpr_full (tdep, regnum)) - { - regnum -= tdep->gpr_full_regnum; - val = extract_unsigned_integer (buf, regsize, byte_order); - regcache_raw_write_unsigned (regcache, S390_R0_REGNUM + regnum, - val & 0xffffffff); - regcache_raw_write_unsigned (regcache, S390_R0_UPPER_REGNUM + regnum, - val >> 32); - return; - } - - if (regnum_is_vxr_full (tdep, regnum)) - { - regnum -= tdep->v0_full_regnum; - regcache_raw_write (regcache, S390_F0_REGNUM + regnum, buf); - regcache_raw_write (regcache, S390_V0_LOWER_REGNUM + regnum, buf + 8); - return; - } - - internal_error (__FILE__, __LINE__, _("invalid regnum")); -} - -/* 'float' values are stored in the upper half of floating-point - registers, even though we are otherwise a big-endian platform. The - same applies to a 'float' value within a vector. */ - -static struct value * -s390_value_from_register (struct gdbarch *gdbarch, struct type *type, - int regnum, struct frame_id frame_id) -{ - struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); - struct value *value = default_value_from_register (gdbarch, type, - regnum, frame_id); - check_typedef (type); - - if ((regnum >= S390_F0_REGNUM && regnum <= S390_F15_REGNUM - && TYPE_LENGTH (type) < 8) - || regnum_is_vxr_full (tdep, regnum) - || (regnum >= S390_V16_REGNUM && regnum <= S390_V31_REGNUM)) - set_value_offset (value, 0); - - return value; -} - -/* Register groups. */ - -static int -s390_pseudo_register_reggroup_p (struct gdbarch *gdbarch, int regnum, - struct reggroup *group) -{ - struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); - - /* We usually save/restore the whole PSW, which includes PC and CC. - However, some older gdbservers may not support saving/restoring - the whole PSW yet, and will return an XML register description - excluding those from the save/restore register groups. In those - cases, we still need to explicitly save/restore PC and CC in order - to push or pop frames. Since this doesn't hurt anything if we - already save/restore the whole PSW (it's just redundant), we add - PC and CC at this point unconditionally. */ - if (group == save_reggroup || group == restore_reggroup) - return regnum == tdep->pc_regnum || regnum == tdep->cc_regnum; - - if (group == vector_reggroup) - return regnum_is_vxr_full (tdep, regnum); - - if (group == general_reggroup && regnum_is_vxr_full (tdep, regnum)) - return 0; - - return default_register_reggroup_p (gdbarch, regnum, group); -} - -/* The "ax_pseudo_register_collect" gdbarch method. */ - -static int -s390_ax_pseudo_register_collect (struct gdbarch *gdbarch, - struct agent_expr *ax, int regnum) -{ - struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); - if (regnum == tdep->pc_regnum) - { - ax_reg_mask (ax, S390_PSWA_REGNUM); - } - else if (regnum == tdep->cc_regnum) - { - ax_reg_mask (ax, S390_PSWM_REGNUM); - } - else if (regnum_is_gpr_full (tdep, regnum)) - { - regnum -= tdep->gpr_full_regnum; - ax_reg_mask (ax, S390_R0_REGNUM + regnum); - ax_reg_mask (ax, S390_R0_UPPER_REGNUM + regnum); - } - else if (regnum_is_vxr_full (tdep, regnum)) - { - regnum -= tdep->v0_full_regnum; - ax_reg_mask (ax, S390_F0_REGNUM + regnum); - ax_reg_mask (ax, S390_V0_LOWER_REGNUM + regnum); - } - else - { - internal_error (__FILE__, __LINE__, _("invalid regnum")); - } - return 0; -} - -/* The "ax_pseudo_register_push_stack" gdbarch method. */ - -static int -s390_ax_pseudo_register_push_stack (struct gdbarch *gdbarch, - struct agent_expr *ax, int regnum) -{ - struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); - if (regnum == tdep->pc_regnum) - { - ax_reg (ax, S390_PSWA_REGNUM); - if (register_size (gdbarch, S390_PSWA_REGNUM) == 4) - { - ax_zero_ext (ax, 31); - } - } - else if (regnum == tdep->cc_regnum) - { - ax_reg (ax, S390_PSWM_REGNUM); - if (register_size (gdbarch, S390_PSWA_REGNUM) == 4) - ax_const_l (ax, 12); - else - ax_const_l (ax, 44); - ax_simple (ax, aop_rsh_unsigned); - ax_zero_ext (ax, 2); - } - else if (regnum_is_gpr_full (tdep, regnum)) - { - regnum -= tdep->gpr_full_regnum; - ax_reg (ax, S390_R0_REGNUM + regnum); - ax_reg (ax, S390_R0_UPPER_REGNUM + regnum); - ax_const_l (ax, 32); - ax_simple (ax, aop_lsh); - ax_simple (ax, aop_bit_or); - } - else if (regnum_is_vxr_full (tdep, regnum)) - { - /* Too large to stuff on the stack. */ - return 1; - } - else - { - internal_error (__FILE__, __LINE__, _("invalid regnum")); - } - return 0; -} - -/* The "gen_return_address" gdbarch method. Since this is supposed to be - just a best-effort method, and we don't really have the means to run - the full unwinder here, just collect the link register. */ - -static void -s390_gen_return_address (struct gdbarch *gdbarch, - struct agent_expr *ax, struct axs_value *value, - CORE_ADDR scope) -{ - value->type = register_type (gdbarch, S390_R14_REGNUM); - value->kind = axs_lvalue_register; - value->u.reg = S390_R14_REGNUM; -} - - -/* A helper for s390_software_single_step, decides if an instruction - is a partial-execution instruction that needs to be executed until - completion when in record mode. If it is, returns 1 and writes - instruction length to a pointer. */ - -static int -s390_is_partial_instruction (struct gdbarch *gdbarch, CORE_ADDR loc, int *len) -{ - enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); - uint16_t insn; - - insn = read_memory_integer (loc, 2, byte_order); - - switch (insn >> 8) - { - case 0xa8: /* MVCLE */ - *len = 4; - return 1; - - case 0xeb: - { - insn = read_memory_integer (loc + 4, 2, byte_order); - if ((insn & 0xff) == 0x8e) - { - /* MVCLU */ - *len = 6; - return 1; - } - } - break; - } - - switch (insn) - { - case 0xb255: /* MVST */ - case 0xb263: /* CMPSC */ - case 0xb2a5: /* TRE */ - case 0xb2a6: /* CU21 */ - case 0xb2a7: /* CU12 */ - case 0xb9b0: /* CU14 */ - case 0xb9b1: /* CU24 */ - case 0xb9b2: /* CU41 */ - case 0xb9b3: /* CU42 */ - case 0xb92a: /* KMF */ - case 0xb92b: /* KMO */ - case 0xb92f: /* KMC */ - case 0xb92d: /* KMCTR */ - case 0xb92e: /* KM */ - case 0xb93c: /* PPNO */ - case 0xb990: /* TRTT */ - case 0xb991: /* TRTO */ - case 0xb992: /* TROT */ - case 0xb993: /* TROO */ - *len = 4; - return 1; - } - - return 0; -} - -/* Implement the "software_single_step" gdbarch method, needed to single step - through instructions like MVCLE in record mode, to make sure they are - executed to completion. Without that, record will save the full length - of destination buffer on every iteration, even though the CPU will only - process about 4kiB of it each time, leading to O(n**2) memory and time - complexity. */ - -static std::vector -s390_software_single_step (struct regcache *regcache) -{ - struct gdbarch *gdbarch = regcache->arch (); - CORE_ADDR loc = regcache_read_pc (regcache); - enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); - int len; - uint16_t insn; - - /* Special handling only if recording. */ - if (!record_full_is_used ()) - return {}; - - /* First, match a partial instruction. */ - if (!s390_is_partial_instruction (gdbarch, loc, &len)) - return {}; - - loc += len; - - /* Second, look for a branch back to it. */ - insn = read_memory_integer (loc, 2, byte_order); - if (insn != 0xa714) /* BRC with mask 1 */ - return {}; - - insn = read_memory_integer (loc + 2, 2, byte_order); - if (insn != (uint16_t) -(len / 2)) - return {}; - - loc += 4; - - /* Found it, step past the whole thing. */ - return {loc}; -} - -static int -s390_displaced_step_hw_singlestep (struct gdbarch *gdbarch, - struct displaced_step_closure *closure) -{ - return 1; -} - - /* Maps for register sets. */ static const struct regcache_map_entry s390_gregmap[] = @@ -1059,1450 +388,6 @@ s390_core_read_description (struct gdbarch *gdbarch, } } - -/* Decoding S/390 instructions. */ - -/* Named opcode values for the S/390 instructions we recognize. Some - instructions have their opcode split across two fields; those are the - op1_* and op2_* enums. */ -enum - { - op1_lhi = 0xa7, op2_lhi = 0x08, - op1_lghi = 0xa7, op2_lghi = 0x09, - op1_lgfi = 0xc0, op2_lgfi = 0x01, - op_lr = 0x18, - op_lgr = 0xb904, - op_l = 0x58, - op1_ly = 0xe3, op2_ly = 0x58, - op1_lg = 0xe3, op2_lg = 0x04, - op_lm = 0x98, - op1_lmy = 0xeb, op2_lmy = 0x98, - op1_lmg = 0xeb, op2_lmg = 0x04, - op_st = 0x50, - op1_sty = 0xe3, op2_sty = 0x50, - op1_stg = 0xe3, op2_stg = 0x24, - op_std = 0x60, - op_stm = 0x90, - op1_stmy = 0xeb, op2_stmy = 0x90, - op1_stmg = 0xeb, op2_stmg = 0x24, - op1_aghi = 0xa7, op2_aghi = 0x0b, - op1_ahi = 0xa7, op2_ahi = 0x0a, - op1_agfi = 0xc2, op2_agfi = 0x08, - op1_afi = 0xc2, op2_afi = 0x09, - op1_algfi= 0xc2, op2_algfi= 0x0a, - op1_alfi = 0xc2, op2_alfi = 0x0b, - op_ar = 0x1a, - op_agr = 0xb908, - op_a = 0x5a, - op1_ay = 0xe3, op2_ay = 0x5a, - op1_ag = 0xe3, op2_ag = 0x08, - op1_slgfi= 0xc2, op2_slgfi= 0x04, - op1_slfi = 0xc2, op2_slfi = 0x05, - op_sr = 0x1b, - op_sgr = 0xb909, - op_s = 0x5b, - op1_sy = 0xe3, op2_sy = 0x5b, - op1_sg = 0xe3, op2_sg = 0x09, - op_nr = 0x14, - op_ngr = 0xb980, - op_la = 0x41, - op1_lay = 0xe3, op2_lay = 0x71, - op1_larl = 0xc0, op2_larl = 0x00, - op_basr = 0x0d, - op_bas = 0x4d, - op_bcr = 0x07, - op_bc = 0x0d, - op_bctr = 0x06, - op_bctgr = 0xb946, - op_bct = 0x46, - op1_bctg = 0xe3, op2_bctg = 0x46, - op_bxh = 0x86, - op1_bxhg = 0xeb, op2_bxhg = 0x44, - op_bxle = 0x87, - op1_bxleg= 0xeb, op2_bxleg= 0x45, - op1_bras = 0xa7, op2_bras = 0x05, - op1_brasl= 0xc0, op2_brasl= 0x05, - op1_brc = 0xa7, op2_brc = 0x04, - op1_brcl = 0xc0, op2_brcl = 0x04, - op1_brct = 0xa7, op2_brct = 0x06, - op1_brctg= 0xa7, op2_brctg= 0x07, - op_brxh = 0x84, - op1_brxhg= 0xec, op2_brxhg= 0x44, - op_brxle = 0x85, - op1_brxlg= 0xec, op2_brxlg= 0x45, - op_svc = 0x0a, - }; - - -/* Read a single instruction from address AT. */ - -#define S390_MAX_INSTR_SIZE 6 -static int -s390_readinstruction (bfd_byte instr[], CORE_ADDR at) -{ - static int s390_instrlen[] = { 2, 4, 4, 6 }; - int instrlen; - - if (target_read_memory (at, &instr[0], 2)) - return -1; - instrlen = s390_instrlen[instr[0] >> 6]; - if (instrlen > 2) - { - if (target_read_memory (at + 2, &instr[2], instrlen - 2)) - return -1; - } - return instrlen; -} - - -/* The functions below are for recognizing and decoding S/390 - instructions of various formats. Each of them checks whether INSN - is an instruction of the given format, with the specified opcodes. - If it is, it sets the remaining arguments to the values of the - instruction's fields, and returns a non-zero value; otherwise, it - returns zero. - - These functions' arguments appear in the order they appear in the - instruction, not in the machine-language form. So, opcodes always - come first, even though they're sometimes scattered around the - instructions. And displacements appear before base and extension - registers, as they do in the assembly syntax, not at the end, as - they do in the machine language. */ -static int -is_ri (bfd_byte *insn, int op1, int op2, unsigned int *r1, int *i2) -{ - if (insn[0] == op1 && (insn[1] & 0xf) == op2) - { - *r1 = (insn[1] >> 4) & 0xf; - /* i2 is a 16-bit signed quantity. */ - *i2 = (((insn[2] << 8) | insn[3]) ^ 0x8000) - 0x8000; - return 1; - } - else - return 0; -} - - -static int -is_ril (bfd_byte *insn, int op1, int op2, - unsigned int *r1, int *i2) -{ - if (insn[0] == op1 && (insn[1] & 0xf) == op2) - { - *r1 = (insn[1] >> 4) & 0xf; - /* i2 is a signed quantity. If the host 'int' is 32 bits long, - no sign extension is necessary, but we don't want to assume - that. */ - *i2 = (((insn[2] << 24) - | (insn[3] << 16) - | (insn[4] << 8) - | (insn[5])) ^ 0x80000000) - 0x80000000; - return 1; - } - else - return 0; -} - - -static int -is_rr (bfd_byte *insn, int op, unsigned int *r1, unsigned int *r2) -{ - if (insn[0] == op) - { - *r1 = (insn[1] >> 4) & 0xf; - *r2 = insn[1] & 0xf; - return 1; - } - else - return 0; -} - - -static int -is_rre (bfd_byte *insn, int op, unsigned int *r1, unsigned int *r2) -{ - if (((insn[0] << 8) | insn[1]) == op) - { - /* Yes, insn[3]. insn[2] is unused in RRE format. */ - *r1 = (insn[3] >> 4) & 0xf; - *r2 = insn[3] & 0xf; - return 1; - } - else - return 0; -} - - -static int -is_rs (bfd_byte *insn, int op, - unsigned int *r1, unsigned int *r3, int *d2, unsigned int *b2) -{ - if (insn[0] == op) - { - *r1 = (insn[1] >> 4) & 0xf; - *r3 = insn[1] & 0xf; - *b2 = (insn[2] >> 4) & 0xf; - *d2 = ((insn[2] & 0xf) << 8) | insn[3]; - return 1; - } - else - return 0; -} - - -static int -is_rsy (bfd_byte *insn, int op1, int op2, - unsigned int *r1, unsigned int *r3, int *d2, unsigned int *b2) -{ - if (insn[0] == op1 - && insn[5] == op2) - { - *r1 = (insn[1] >> 4) & 0xf; - *r3 = insn[1] & 0xf; - *b2 = (insn[2] >> 4) & 0xf; - /* The 'long displacement' is a 20-bit signed integer. */ - *d2 = ((((insn[2] & 0xf) << 8) | insn[3] | (insn[4] << 12)) - ^ 0x80000) - 0x80000; - return 1; - } - else - return 0; -} - - -static int -is_rx (bfd_byte *insn, int op, - unsigned int *r1, int *d2, unsigned int *x2, unsigned int *b2) -{ - if (insn[0] == op) - { - *r1 = (insn[1] >> 4) & 0xf; - *x2 = insn[1] & 0xf; - *b2 = (insn[2] >> 4) & 0xf; - *d2 = ((insn[2] & 0xf) << 8) | insn[3]; - return 1; - } - else - return 0; -} - - -static int -is_rxy (bfd_byte *insn, int op1, int op2, - unsigned int *r1, int *d2, unsigned int *x2, unsigned int *b2) -{ - if (insn[0] == op1 - && insn[5] == op2) - { - *r1 = (insn[1] >> 4) & 0xf; - *x2 = insn[1] & 0xf; - *b2 = (insn[2] >> 4) & 0xf; - /* The 'long displacement' is a 20-bit signed integer. */ - *d2 = ((((insn[2] & 0xf) << 8) | insn[3] | (insn[4] << 12)) - ^ 0x80000) - 0x80000; - return 1; - } - else - return 0; -} - - -/* Prologue analysis. */ - -#define S390_NUM_GPRS 16 -#define S390_NUM_FPRS 16 - -struct s390_prologue_data { - - /* The stack. */ - struct pv_area *stack; - - /* The size and byte-order of a GPR or FPR. */ - int gpr_size; - int fpr_size; - enum bfd_endian byte_order; - - /* The general-purpose registers. */ - pv_t gpr[S390_NUM_GPRS]; - - /* The floating-point registers. */ - pv_t fpr[S390_NUM_FPRS]; - - /* The offset relative to the CFA where the incoming GPR N was saved - by the function prologue. 0 if not saved or unknown. */ - int gpr_slot[S390_NUM_GPRS]; - - /* Likewise for FPRs. */ - int fpr_slot[S390_NUM_FPRS]; - - /* Nonzero if the backchain was saved. This is assumed to be the - case when the incoming SP is saved at the current SP location. */ - int back_chain_saved_p; -}; - -/* Return the effective address for an X-style instruction, like: - - L R1, D2(X2, B2) - - Here, X2 and B2 are registers, and D2 is a signed 20-bit - constant; the effective address is the sum of all three. If either - X2 or B2 are zero, then it doesn't contribute to the sum --- this - means that r0 can't be used as either X2 or B2. */ -static pv_t -s390_addr (struct s390_prologue_data *data, - int d2, unsigned int x2, unsigned int b2) -{ - pv_t result; - - result = pv_constant (d2); - if (x2) - result = pv_add (result, data->gpr[x2]); - if (b2) - result = pv_add (result, data->gpr[b2]); - - return result; -} - -/* Do a SIZE-byte store of VALUE to D2(X2,B2). */ -static void -s390_store (struct s390_prologue_data *data, - int d2, unsigned int x2, unsigned int b2, CORE_ADDR size, - pv_t value) -{ - pv_t addr = s390_addr (data, d2, x2, b2); - pv_t offset; - - /* Check whether we are storing the backchain. */ - offset = pv_subtract (data->gpr[S390_SP_REGNUM - S390_R0_REGNUM], addr); - - if (pv_is_constant (offset) && offset.k == 0) - if (size == data->gpr_size - && pv_is_register_k (value, S390_SP_REGNUM, 0)) - { - data->back_chain_saved_p = 1; - return; - } - - - /* Check whether we are storing a register into the stack. */ - if (!data->stack->store_would_trash (addr)) - data->stack->store (addr, size, value); - - - /* Note: If this is some store we cannot identify, you might think we - should forget our cached values, as any of those might have been hit. - - However, we make the assumption that the register save areas are only - ever stored to once in any given function, and we do recognize these - stores. Thus every store we cannot recognize does not hit our data. */ -} - -/* Do a SIZE-byte load from D2(X2,B2). */ -static pv_t -s390_load (struct s390_prologue_data *data, - int d2, unsigned int x2, unsigned int b2, CORE_ADDR size) - -{ - pv_t addr = s390_addr (data, d2, x2, b2); - - /* If it's a load from an in-line constant pool, then we can - simulate that, under the assumption that the code isn't - going to change between the time the processor actually - executed it creating the current frame, and the time when - we're analyzing the code to unwind past that frame. */ - if (pv_is_constant (addr)) - { - struct target_section *secp; - secp = target_section_by_addr (¤t_target, addr.k); - if (secp != NULL - && (bfd_get_section_flags (secp->the_bfd_section->owner, - secp->the_bfd_section) - & SEC_READONLY)) - return pv_constant (read_memory_integer (addr.k, size, - data->byte_order)); - } - - /* Check whether we are accessing one of our save slots. */ - return data->stack->fetch (addr, size); -} - -/* Function for finding saved registers in a 'struct pv_area'; we pass - this to pv_area::scan. - - If VALUE is a saved register, ADDR says it was saved at a constant - offset from the frame base, and SIZE indicates that the whole - register was saved, record its offset in the reg_offset table in - PROLOGUE_UNTYPED. */ -static void -s390_check_for_saved (void *data_untyped, pv_t addr, - CORE_ADDR size, pv_t value) -{ - struct s390_prologue_data *data = (struct s390_prologue_data *) data_untyped; - int i, offset; - - if (!pv_is_register (addr, S390_SP_REGNUM)) - return; - - offset = 16 * data->gpr_size + 32 - addr.k; - - /* If we are storing the original value of a register, we want to - record the CFA offset. If the same register is stored multiple - times, the stack slot with the highest address counts. */ - - for (i = 0; i < S390_NUM_GPRS; i++) - if (size == data->gpr_size - && pv_is_register_k (value, S390_R0_REGNUM + i, 0)) - if (data->gpr_slot[i] == 0 - || data->gpr_slot[i] > offset) - { - data->gpr_slot[i] = offset; - return; - } - - for (i = 0; i < S390_NUM_FPRS; i++) - if (size == data->fpr_size - && pv_is_register_k (value, S390_F0_REGNUM + i, 0)) - if (data->fpr_slot[i] == 0 - || data->fpr_slot[i] > offset) - { - data->fpr_slot[i] = offset; - return; - } -} - -/* Analyze the prologue of the function starting at START_PC, - continuing at most until CURRENT_PC. Initialize DATA to - hold all information we find out about the state of the registers - and stack slots. Return the address of the instruction after - the last one that changed the SP, FP, or back chain; or zero - on error. */ -static CORE_ADDR -s390_analyze_prologue (struct gdbarch *gdbarch, - CORE_ADDR start_pc, - CORE_ADDR current_pc, - struct s390_prologue_data *data) -{ - int word_size = gdbarch_ptr_bit (gdbarch) / 8; - - /* Our return value: - The address of the instruction after the last one that changed - the SP, FP, or back chain; zero if we got an error trying to - read memory. */ - CORE_ADDR result = start_pc; - - /* The current PC for our abstract interpretation. */ - CORE_ADDR pc; - - /* The address of the next instruction after that. */ - CORE_ADDR next_pc; - - pv_area stack (S390_SP_REGNUM, gdbarch_addr_bit (gdbarch)); - scoped_restore restore_stack = make_scoped_restore (&data->stack, &stack); - - /* Set up everything's initial value. */ - { - int i; - - /* For the purpose of prologue tracking, we consider the GPR size to - be equal to the ABI word size, even if it is actually larger - (i.e. when running a 32-bit binary under a 64-bit kernel). */ - data->gpr_size = word_size; - data->fpr_size = 8; - data->byte_order = gdbarch_byte_order (gdbarch); - - for (i = 0; i < S390_NUM_GPRS; i++) - data->gpr[i] = pv_register (S390_R0_REGNUM + i, 0); - - for (i = 0; i < S390_NUM_FPRS; i++) - data->fpr[i] = pv_register (S390_F0_REGNUM + i, 0); - - for (i = 0; i < S390_NUM_GPRS; i++) - data->gpr_slot[i] = 0; - - for (i = 0; i < S390_NUM_FPRS; i++) - data->fpr_slot[i] = 0; - - data->back_chain_saved_p = 0; - } - - /* Start interpreting instructions, until we hit the frame's - current PC or the first branch instruction. */ - for (pc = start_pc; pc > 0 && pc < current_pc; pc = next_pc) - { - bfd_byte insn[S390_MAX_INSTR_SIZE]; - int insn_len = s390_readinstruction (insn, pc); - - bfd_byte dummy[S390_MAX_INSTR_SIZE] = { 0 }; - bfd_byte *insn32 = word_size == 4 ? insn : dummy; - bfd_byte *insn64 = word_size == 8 ? insn : dummy; - - /* Fields for various kinds of instructions. */ - unsigned int b2, r1, r2, x2, r3; - int i2, d2; - - /* The values of SP and FP before this instruction, - for detecting instructions that change them. */ - pv_t pre_insn_sp, pre_insn_fp; - /* Likewise for the flag whether the back chain was saved. */ - int pre_insn_back_chain_saved_p; - - /* If we got an error trying to read the instruction, report it. */ - if (insn_len < 0) - { - result = 0; - break; - } - - next_pc = pc + insn_len; - - pre_insn_sp = data->gpr[S390_SP_REGNUM - S390_R0_REGNUM]; - pre_insn_fp = data->gpr[S390_FRAME_REGNUM - S390_R0_REGNUM]; - pre_insn_back_chain_saved_p = data->back_chain_saved_p; - - - /* LHI r1, i2 --- load halfword immediate. */ - /* LGHI r1, i2 --- load halfword immediate (64-bit version). */ - /* LGFI r1, i2 --- load fullword immediate. */ - if (is_ri (insn32, op1_lhi, op2_lhi, &r1, &i2) - || is_ri (insn64, op1_lghi, op2_lghi, &r1, &i2) - || is_ril (insn, op1_lgfi, op2_lgfi, &r1, &i2)) - data->gpr[r1] = pv_constant (i2); - - /* LR r1, r2 --- load from register. */ - /* LGR r1, r2 --- load from register (64-bit version). */ - else if (is_rr (insn32, op_lr, &r1, &r2) - || is_rre (insn64, op_lgr, &r1, &r2)) - data->gpr[r1] = data->gpr[r2]; - - /* L r1, d2(x2, b2) --- load. */ - /* LY r1, d2(x2, b2) --- load (long-displacement version). */ - /* LG r1, d2(x2, b2) --- load (64-bit version). */ - else if (is_rx (insn32, op_l, &r1, &d2, &x2, &b2) - || is_rxy (insn32, op1_ly, op2_ly, &r1, &d2, &x2, &b2) - || is_rxy (insn64, op1_lg, op2_lg, &r1, &d2, &x2, &b2)) - data->gpr[r1] = s390_load (data, d2, x2, b2, data->gpr_size); - - /* ST r1, d2(x2, b2) --- store. */ - /* STY r1, d2(x2, b2) --- store (long-displacement version). */ - /* STG r1, d2(x2, b2) --- store (64-bit version). */ - else if (is_rx (insn32, op_st, &r1, &d2, &x2, &b2) - || is_rxy (insn32, op1_sty, op2_sty, &r1, &d2, &x2, &b2) - || is_rxy (insn64, op1_stg, op2_stg, &r1, &d2, &x2, &b2)) - s390_store (data, d2, x2, b2, data->gpr_size, data->gpr[r1]); - - /* STD r1, d2(x2,b2) --- store floating-point register. */ - else if (is_rx (insn, op_std, &r1, &d2, &x2, &b2)) - s390_store (data, d2, x2, b2, data->fpr_size, data->fpr[r1]); - - /* STM r1, r3, d2(b2) --- store multiple. */ - /* STMY r1, r3, d2(b2) --- store multiple (long-displacement - version). */ - /* STMG r1, r3, d2(b2) --- store multiple (64-bit version). */ - else if (is_rs (insn32, op_stm, &r1, &r3, &d2, &b2) - || is_rsy (insn32, op1_stmy, op2_stmy, &r1, &r3, &d2, &b2) - || is_rsy (insn64, op1_stmg, op2_stmg, &r1, &r3, &d2, &b2)) - { - for (; r1 <= r3; r1++, d2 += data->gpr_size) - s390_store (data, d2, 0, b2, data->gpr_size, data->gpr[r1]); - } - - /* AHI r1, i2 --- add halfword immediate. */ - /* AGHI r1, i2 --- add halfword immediate (64-bit version). */ - /* AFI r1, i2 --- add fullword immediate. */ - /* AGFI r1, i2 --- add fullword immediate (64-bit version). */ - else if (is_ri (insn32, op1_ahi, op2_ahi, &r1, &i2) - || is_ri (insn64, op1_aghi, op2_aghi, &r1, &i2) - || is_ril (insn32, op1_afi, op2_afi, &r1, &i2) - || is_ril (insn64, op1_agfi, op2_agfi, &r1, &i2)) - data->gpr[r1] = pv_add_constant (data->gpr[r1], i2); - - /* ALFI r1, i2 --- add logical immediate. */ - /* ALGFI r1, i2 --- add logical immediate (64-bit version). */ - else if (is_ril (insn32, op1_alfi, op2_alfi, &r1, &i2) - || is_ril (insn64, op1_algfi, op2_algfi, &r1, &i2)) - data->gpr[r1] = pv_add_constant (data->gpr[r1], - (CORE_ADDR)i2 & 0xffffffff); - - /* AR r1, r2 -- add register. */ - /* AGR r1, r2 -- add register (64-bit version). */ - else if (is_rr (insn32, op_ar, &r1, &r2) - || is_rre (insn64, op_agr, &r1, &r2)) - data->gpr[r1] = pv_add (data->gpr[r1], data->gpr[r2]); - - /* A r1, d2(x2, b2) -- add. */ - /* AY r1, d2(x2, b2) -- add (long-displacement version). */ - /* AG r1, d2(x2, b2) -- add (64-bit version). */ - else if (is_rx (insn32, op_a, &r1, &d2, &x2, &b2) - || is_rxy (insn32, op1_ay, op2_ay, &r1, &d2, &x2, &b2) - || is_rxy (insn64, op1_ag, op2_ag, &r1, &d2, &x2, &b2)) - data->gpr[r1] = pv_add (data->gpr[r1], - s390_load (data, d2, x2, b2, data->gpr_size)); - - /* SLFI r1, i2 --- subtract logical immediate. */ - /* SLGFI r1, i2 --- subtract logical immediate (64-bit version). */ - else if (is_ril (insn32, op1_slfi, op2_slfi, &r1, &i2) - || is_ril (insn64, op1_slgfi, op2_slgfi, &r1, &i2)) - data->gpr[r1] = pv_add_constant (data->gpr[r1], - -((CORE_ADDR)i2 & 0xffffffff)); - - /* SR r1, r2 -- subtract register. */ - /* SGR r1, r2 -- subtract register (64-bit version). */ - else if (is_rr (insn32, op_sr, &r1, &r2) - || is_rre (insn64, op_sgr, &r1, &r2)) - data->gpr[r1] = pv_subtract (data->gpr[r1], data->gpr[r2]); - - /* S r1, d2(x2, b2) -- subtract. */ - /* SY r1, d2(x2, b2) -- subtract (long-displacement version). */ - /* SG r1, d2(x2, b2) -- subtract (64-bit version). */ - else if (is_rx (insn32, op_s, &r1, &d2, &x2, &b2) - || is_rxy (insn32, op1_sy, op2_sy, &r1, &d2, &x2, &b2) - || is_rxy (insn64, op1_sg, op2_sg, &r1, &d2, &x2, &b2)) - data->gpr[r1] = pv_subtract (data->gpr[r1], - s390_load (data, d2, x2, b2, data->gpr_size)); - - /* LA r1, d2(x2, b2) --- load address. */ - /* LAY r1, d2(x2, b2) --- load address (long-displacement version). */ - else if (is_rx (insn, op_la, &r1, &d2, &x2, &b2) - || is_rxy (insn, op1_lay, op2_lay, &r1, &d2, &x2, &b2)) - data->gpr[r1] = s390_addr (data, d2, x2, b2); - - /* LARL r1, i2 --- load address relative long. */ - else if (is_ril (insn, op1_larl, op2_larl, &r1, &i2)) - data->gpr[r1] = pv_constant (pc + i2 * 2); - - /* BASR r1, 0 --- branch and save. - Since r2 is zero, this saves the PC in r1, but doesn't branch. */ - else if (is_rr (insn, op_basr, &r1, &r2) - && r2 == 0) - data->gpr[r1] = pv_constant (next_pc); - - /* BRAS r1, i2 --- branch relative and save. */ - else if (is_ri (insn, op1_bras, op2_bras, &r1, &i2)) - { - data->gpr[r1] = pv_constant (next_pc); - next_pc = pc + i2 * 2; - - /* We'd better not interpret any backward branches. We'll - never terminate. */ - if (next_pc <= pc) - break; - } - - /* BRC/BRCL -- branch relative on condition. Ignore "branch - never", branch to following instruction, and "conditional - trap" (BRC +2). Otherwise terminate search. */ - else if (is_ri (insn, op1_brc, op2_brc, &r1, &i2)) - { - if (r1 != 0 && i2 != 1 && i2 != 2) - break; - } - else if (is_ril (insn, op1_brcl, op2_brcl, &r1, &i2)) - { - if (r1 != 0 && i2 != 3) - break; - } - - /* Terminate search when hitting any other branch instruction. */ - else if (is_rr (insn, op_basr, &r1, &r2) - || is_rx (insn, op_bas, &r1, &d2, &x2, &b2) - || is_rr (insn, op_bcr, &r1, &r2) - || is_rx (insn, op_bc, &r1, &d2, &x2, &b2) - || is_ril (insn, op1_brasl, op2_brasl, &r2, &i2)) - break; - - else - { - /* An instruction we don't know how to simulate. The only - safe thing to do would be to set every value we're tracking - to 'unknown'. Instead, we'll be optimistic: we assume that - we *can* interpret every instruction that the compiler uses - to manipulate any of the data we're interested in here -- - then we can just ignore anything else. */ - } - - /* Record the address after the last instruction that changed - the FP, SP, or backlink. Ignore instructions that changed - them back to their original values --- those are probably - restore instructions. (The back chain is never restored, - just popped.) */ - { - pv_t sp = data->gpr[S390_SP_REGNUM - S390_R0_REGNUM]; - pv_t fp = data->gpr[S390_FRAME_REGNUM - S390_R0_REGNUM]; - - if ((! pv_is_identical (pre_insn_sp, sp) - && ! pv_is_register_k (sp, S390_SP_REGNUM, 0) - && sp.kind != pvk_unknown) - || (! pv_is_identical (pre_insn_fp, fp) - && ! pv_is_register_k (fp, S390_FRAME_REGNUM, 0) - && fp.kind != pvk_unknown) - || pre_insn_back_chain_saved_p != data->back_chain_saved_p) - result = next_pc; - } - } - - /* Record where all the registers were saved. */ - data->stack->scan (s390_check_for_saved, data); - - return result; -} - -/* Advance PC across any function entry prologue instructions to reach - some "real" code. */ -static CORE_ADDR -s390_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc) -{ - struct s390_prologue_data data; - CORE_ADDR skip_pc, func_addr; - - if (find_pc_partial_function (pc, NULL, &func_addr, NULL)) - { - CORE_ADDR post_prologue_pc - = skip_prologue_using_sal (gdbarch, func_addr); - if (post_prologue_pc != 0) - return std::max (pc, post_prologue_pc); - } - - skip_pc = s390_analyze_prologue (gdbarch, pc, (CORE_ADDR)-1, &data); - return skip_pc ? skip_pc : pc; -} - -/* Implmement the stack_frame_destroyed_p gdbarch method. */ -static int -s390_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc) -{ - int word_size = gdbarch_ptr_bit (gdbarch) / 8; - - /* In frameless functions, there's not frame to destroy and thus - we don't care about the epilogue. - - In functions with frame, the epilogue sequence is a pair of - a LM-type instruction that restores (amongst others) the - return register %r14 and the stack pointer %r15, followed - by a branch 'br %r14' --or equivalent-- that effects the - actual return. - - In that situation, this function needs to return 'true' in - exactly one case: when pc points to that branch instruction. - - Thus we try to disassemble the one instructions immediately - preceding pc and check whether it is an LM-type instruction - modifying the stack pointer. - - Note that disassembling backwards is not reliable, so there - is a slight chance of false positives here ... */ - - bfd_byte insn[6]; - unsigned int r1, r3, b2; - int d2; - - if (word_size == 4 - && !target_read_memory (pc - 4, insn, 4) - && is_rs (insn, op_lm, &r1, &r3, &d2, &b2) - && r3 == S390_SP_REGNUM - S390_R0_REGNUM) - return 1; - - if (word_size == 4 - && !target_read_memory (pc - 6, insn, 6) - && is_rsy (insn, op1_lmy, op2_lmy, &r1, &r3, &d2, &b2) - && r3 == S390_SP_REGNUM - S390_R0_REGNUM) - return 1; - - if (word_size == 8 - && !target_read_memory (pc - 6, insn, 6) - && is_rsy (insn, op1_lmg, op2_lmg, &r1, &r3, &d2, &b2) - && r3 == S390_SP_REGNUM - S390_R0_REGNUM) - return 1; - - return 0; -} - -/* Displaced stepping. */ - -/* Return true if INSN is a non-branch RIL-b or RIL-c format - instruction. */ - -static int -is_non_branch_ril (gdb_byte *insn) -{ - gdb_byte op1 = insn[0]; - - if (op1 == 0xc4) - { - gdb_byte op2 = insn[1] & 0x0f; - - switch (op2) - { - case 0x02: /* llhrl */ - case 0x04: /* lghrl */ - case 0x05: /* lhrl */ - case 0x06: /* llghrl */ - case 0x07: /* sthrl */ - case 0x08: /* lgrl */ - case 0x0b: /* stgrl */ - case 0x0c: /* lgfrl */ - case 0x0d: /* lrl */ - case 0x0e: /* llgfrl */ - case 0x0f: /* strl */ - return 1; - } - } - else if (op1 == 0xc6) - { - gdb_byte op2 = insn[1] & 0x0f; - - switch (op2) - { - case 0x00: /* exrl */ - case 0x02: /* pfdrl */ - case 0x04: /* cghrl */ - case 0x05: /* chrl */ - case 0x06: /* clghrl */ - case 0x07: /* clhrl */ - case 0x08: /* cgrl */ - case 0x0a: /* clgrl */ - case 0x0c: /* cgfrl */ - case 0x0d: /* crl */ - case 0x0e: /* clgfrl */ - case 0x0f: /* clrl */ - return 1; - } - } - - return 0; -} - -typedef buf_displaced_step_closure s390_displaced_step_closure; - -/* Implementation of gdbarch_displaced_step_copy_insn. */ - -static struct displaced_step_closure * -s390_displaced_step_copy_insn (struct gdbarch *gdbarch, - CORE_ADDR from, CORE_ADDR to, - struct regcache *regs) -{ - size_t len = gdbarch_max_insn_length (gdbarch); - std::unique_ptr closure - (new s390_displaced_step_closure (len)); - gdb_byte *buf = closure->buf.data (); - - read_memory (from, buf, len); - - /* Adjust the displacement field of PC-relative RIL instructions, - except branches. The latter are handled in the fixup hook. */ - if (is_non_branch_ril (buf)) - { - LONGEST offset; - - offset = extract_signed_integer (buf + 2, 4, BFD_ENDIAN_BIG); - offset = (from - to + offset * 2) / 2; - - /* If the instruction is too far from the jump pad, punt. This - will usually happen with instructions in shared libraries. - We could probably support these by rewriting them to be - absolute or fully emulating them. */ - if (offset < INT32_MIN || offset > INT32_MAX) - { - /* Let the core fall back to stepping over the breakpoint - in-line. */ - if (debug_displaced) - { - fprintf_unfiltered (gdb_stdlog, - "displaced: can't displaced step " - "RIL instruction: offset %s out of range\n", - plongest (offset)); - } - - return NULL; - } - - store_signed_integer (buf + 2, 4, BFD_ENDIAN_BIG, offset); - } - - write_memory (to, buf, len); - - if (debug_displaced) - { - fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ", - paddress (gdbarch, from), paddress (gdbarch, to)); - displaced_step_dump_bytes (gdb_stdlog, buf, len); - } - - return closure.release (); -} - -/* Fix up the state of registers and memory after having single-stepped - a displaced instruction. */ -static void -s390_displaced_step_fixup (struct gdbarch *gdbarch, - struct displaced_step_closure *closure_, - CORE_ADDR from, CORE_ADDR to, - struct regcache *regs) -{ - /* Our closure is a copy of the instruction. */ - s390_displaced_step_closure *closure - = (s390_displaced_step_closure *) closure_; - gdb_byte *insn = closure->buf.data (); - static int s390_instrlen[] = { 2, 4, 4, 6 }; - int insnlen = s390_instrlen[insn[0] >> 6]; - - /* Fields for various kinds of instructions. */ - unsigned int b2, r1, r2, x2, r3; - int i2, d2; - - /* Get current PC and addressing mode bit. */ - CORE_ADDR pc = regcache_read_pc (regs); - ULONGEST amode = 0; - - if (register_size (gdbarch, S390_PSWA_REGNUM) == 4) - { - regcache_cooked_read_unsigned (regs, S390_PSWA_REGNUM, &amode); - amode &= 0x80000000; - } - - if (debug_displaced) - fprintf_unfiltered (gdb_stdlog, - "displaced: (s390) fixup (%s, %s) pc %s len %d amode 0x%x\n", - paddress (gdbarch, from), paddress (gdbarch, to), - paddress (gdbarch, pc), insnlen, (int) amode); - - /* Handle absolute branch and save instructions. */ - if (is_rr (insn, op_basr, &r1, &r2) - || is_rx (insn, op_bas, &r1, &d2, &x2, &b2)) - { - /* Recompute saved return address in R1. */ - regcache_cooked_write_unsigned (regs, S390_R0_REGNUM + r1, - amode | (from + insnlen)); - } - - /* Handle absolute branch instructions. */ - else if (is_rr (insn, op_bcr, &r1, &r2) - || is_rx (insn, op_bc, &r1, &d2, &x2, &b2) - || is_rr (insn, op_bctr, &r1, &r2) - || is_rre (insn, op_bctgr, &r1, &r2) - || is_rx (insn, op_bct, &r1, &d2, &x2, &b2) - || is_rxy (insn, op1_bctg, op2_brctg, &r1, &d2, &x2, &b2) - || is_rs (insn, op_bxh, &r1, &r3, &d2, &b2) - || is_rsy (insn, op1_bxhg, op2_bxhg, &r1, &r3, &d2, &b2) - || is_rs (insn, op_bxle, &r1, &r3, &d2, &b2) - || is_rsy (insn, op1_bxleg, op2_bxleg, &r1, &r3, &d2, &b2)) - { - /* Update PC iff branch was *not* taken. */ - if (pc == to + insnlen) - regcache_write_pc (regs, from + insnlen); - } - - /* Handle PC-relative branch and save instructions. */ - else if (is_ri (insn, op1_bras, op2_bras, &r1, &i2) - || is_ril (insn, op1_brasl, op2_brasl, &r1, &i2)) - { - /* Update PC. */ - regcache_write_pc (regs, pc - to + from); - /* Recompute saved return address in R1. */ - regcache_cooked_write_unsigned (regs, S390_R0_REGNUM + r1, - amode | (from + insnlen)); - } - - /* Handle LOAD ADDRESS RELATIVE LONG. */ - else if (is_ril (insn, op1_larl, op2_larl, &r1, &i2)) - { - /* Update PC. */ - regcache_write_pc (regs, from + insnlen); - /* Recompute output address in R1. */ - regcache_cooked_write_unsigned (regs, S390_R0_REGNUM + r1, - amode | (from + i2 * 2)); - } - - /* If we executed a breakpoint instruction, point PC right back at it. */ - else if (insn[0] == 0x0 && insn[1] == 0x1) - regcache_write_pc (regs, from); - - /* For any other insn, adjust PC by negated displacement. PC then - points right after the original instruction, except for PC-relative - branches, where it points to the adjusted branch target. */ - else - regcache_write_pc (regs, pc - to + from); - - if (debug_displaced) - fprintf_unfiltered (gdb_stdlog, - "displaced: (s390) pc is now %s\n", - paddress (gdbarch, regcache_read_pc (regs))); -} - - -/* Helper routine to unwind pseudo registers. */ - -static struct value * -s390_unwind_pseudo_register (struct frame_info *this_frame, int regnum) -{ - struct gdbarch *gdbarch = get_frame_arch (this_frame); - struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); - struct type *type = register_type (gdbarch, regnum); - - /* Unwind PC via PSW address. */ - if (regnum == tdep->pc_regnum) - { - struct value *val; - - val = frame_unwind_register_value (this_frame, S390_PSWA_REGNUM); - if (!value_optimized_out (val)) - { - LONGEST pswa = value_as_long (val); - - if (TYPE_LENGTH (type) == 4) - return value_from_pointer (type, pswa & 0x7fffffff); - else - return value_from_pointer (type, pswa); - } - } - - /* Unwind CC via PSW mask. */ - if (regnum == tdep->cc_regnum) - { - struct value *val; - - val = frame_unwind_register_value (this_frame, S390_PSWM_REGNUM); - if (!value_optimized_out (val)) - { - LONGEST pswm = value_as_long (val); - - if (TYPE_LENGTH (type) == 4) - return value_from_longest (type, (pswm >> 12) & 3); - else - return value_from_longest (type, (pswm >> 44) & 3); - } - } - - /* Unwind full GPRs to show at least the lower halves (as the - upper halves are undefined). */ - if (regnum_is_gpr_full (tdep, regnum)) - { - int reg = regnum - tdep->gpr_full_regnum; - struct value *val; - - val = frame_unwind_register_value (this_frame, S390_R0_REGNUM + reg); - if (!value_optimized_out (val)) - return value_cast (type, val); - } - - return allocate_optimized_out_value (type); -} - -static struct value * -s390_trad_frame_prev_register (struct frame_info *this_frame, - struct trad_frame_saved_reg saved_regs[], - int regnum) -{ - if (regnum < S390_NUM_REGS) - return trad_frame_get_prev_register (this_frame, saved_regs, regnum); - else - return s390_unwind_pseudo_register (this_frame, regnum); -} - - -/* Normal stack frames. */ - -struct s390_unwind_cache { - - CORE_ADDR func; - CORE_ADDR frame_base; - CORE_ADDR local_base; - - struct trad_frame_saved_reg *saved_regs; -}; - -static int -s390_prologue_frame_unwind_cache (struct frame_info *this_frame, - struct s390_unwind_cache *info) -{ - struct gdbarch *gdbarch = get_frame_arch (this_frame); - int word_size = gdbarch_ptr_bit (gdbarch) / 8; - struct s390_prologue_data data; - pv_t *fp = &data.gpr[S390_FRAME_REGNUM - S390_R0_REGNUM]; - pv_t *sp = &data.gpr[S390_SP_REGNUM - S390_R0_REGNUM]; - int i; - CORE_ADDR cfa; - CORE_ADDR func; - CORE_ADDR result; - ULONGEST reg; - CORE_ADDR prev_sp; - int frame_pointer; - int size; - struct frame_info *next_frame; - - /* Try to find the function start address. If we can't find it, we don't - bother searching for it -- with modern compilers this would be mostly - pointless anyway. Trust that we'll either have valid DWARF-2 CFI data - or else a valid backchain ... */ - if (!get_frame_func_if_available (this_frame, &info->func)) - { - info->func = -1; - return 0; - } - func = info->func; - - /* Try to analyze the prologue. */ - result = s390_analyze_prologue (gdbarch, func, - get_frame_pc (this_frame), &data); - if (!result) - return 0; - - /* If this was successful, we should have found the instruction that - sets the stack pointer register to the previous value of the stack - pointer minus the frame size. */ - if (!pv_is_register (*sp, S390_SP_REGNUM)) - return 0; - - /* A frame size of zero at this point can mean either a real - frameless function, or else a failure to find the prologue. - Perform some sanity checks to verify we really have a - frameless function. */ - if (sp->k == 0) - { - /* If the next frame is a NORMAL_FRAME, this frame *cannot* have frame - size zero. This is only possible if the next frame is a sentinel - frame, a dummy frame, or a signal trampoline frame. */ - /* FIXME: cagney/2004-05-01: This sanity check shouldn't be - needed, instead the code should simpliy rely on its - analysis. */ - next_frame = get_next_frame (this_frame); - while (next_frame && get_frame_type (next_frame) == INLINE_FRAME) - next_frame = get_next_frame (next_frame); - if (next_frame - && get_frame_type (get_next_frame (this_frame)) == NORMAL_FRAME) - return 0; - - /* If we really have a frameless function, %r14 must be valid - -- in particular, it must point to a different function. */ - reg = get_frame_register_unsigned (this_frame, S390_RETADDR_REGNUM); - reg = gdbarch_addr_bits_remove (gdbarch, reg) - 1; - if (get_pc_function_start (reg) == func) - { - /* However, there is one case where it *is* valid for %r14 - to point to the same function -- if this is a recursive - call, and we have stopped in the prologue *before* the - stack frame was allocated. - - Recognize this case by looking ahead a bit ... */ - - struct s390_prologue_data data2; - pv_t *sp = &data2.gpr[S390_SP_REGNUM - S390_R0_REGNUM]; - - if (!(s390_analyze_prologue (gdbarch, func, (CORE_ADDR)-1, &data2) - && pv_is_register (*sp, S390_SP_REGNUM) - && sp->k != 0)) - return 0; - } - } - - - /* OK, we've found valid prologue data. */ - size = -sp->k; - - /* If the frame pointer originally also holds the same value - as the stack pointer, we're probably using it. If it holds - some other value -- even a constant offset -- it is most - likely used as temp register. */ - if (pv_is_identical (*sp, *fp)) - frame_pointer = S390_FRAME_REGNUM; - else - frame_pointer = S390_SP_REGNUM; - - /* If we've detected a function with stack frame, we'll still have to - treat it as frameless if we're currently within the function epilog - code at a point where the frame pointer has already been restored. - This can only happen in an innermost frame. */ - /* FIXME: cagney/2004-05-01: This sanity check shouldn't be needed, - instead the code should simpliy rely on its analysis. */ - next_frame = get_next_frame (this_frame); - while (next_frame && get_frame_type (next_frame) == INLINE_FRAME) - next_frame = get_next_frame (next_frame); - if (size > 0 - && (next_frame == NULL - || get_frame_type (get_next_frame (this_frame)) != NORMAL_FRAME)) - { - /* See the comment in s390_stack_frame_destroyed_p on why this is - not completely reliable ... */ - if (s390_stack_frame_destroyed_p (gdbarch, get_frame_pc (this_frame))) - { - memset (&data, 0, sizeof (data)); - size = 0; - frame_pointer = S390_SP_REGNUM; - } - } - - /* Once we know the frame register and the frame size, we can unwind - the current value of the frame register from the next frame, and - add back the frame size to arrive that the previous frame's - stack pointer value. */ - prev_sp = get_frame_register_unsigned (this_frame, frame_pointer) + size; - cfa = prev_sp + 16*word_size + 32; - - /* Set up ABI call-saved/call-clobbered registers. */ - for (i = 0; i < S390_NUM_REGS; i++) - if (!s390_register_call_saved (gdbarch, i)) - trad_frame_set_unknown (info->saved_regs, i); - - /* CC is always call-clobbered. */ - trad_frame_set_unknown (info->saved_regs, S390_PSWM_REGNUM); - - /* Record the addresses of all register spill slots the prologue parser - has recognized. Consider only registers defined as call-saved by the - ABI; for call-clobbered registers the parser may have recognized - spurious stores. */ - - for (i = 0; i < 16; i++) - if (s390_register_call_saved (gdbarch, S390_R0_REGNUM + i) - && data.gpr_slot[i] != 0) - info->saved_regs[S390_R0_REGNUM + i].addr = cfa - data.gpr_slot[i]; - - for (i = 0; i < 16; i++) - if (s390_register_call_saved (gdbarch, S390_F0_REGNUM + i) - && data.fpr_slot[i] != 0) - info->saved_regs[S390_F0_REGNUM + i].addr = cfa - data.fpr_slot[i]; - - /* Function return will set PC to %r14. */ - info->saved_regs[S390_PSWA_REGNUM] = info->saved_regs[S390_RETADDR_REGNUM]; - - /* In frameless functions, we unwind simply by moving the return - address to the PC. However, if we actually stored to the - save area, use that -- we might only think the function frameless - because we're in the middle of the prologue ... */ - if (size == 0 - && !trad_frame_addr_p (info->saved_regs, S390_PSWA_REGNUM)) - { - info->saved_regs[S390_PSWA_REGNUM].realreg = S390_RETADDR_REGNUM; - } - - /* Another sanity check: unless this is a frameless function, - we should have found spill slots for SP and PC. - If not, we cannot unwind further -- this happens e.g. in - libc's thread_start routine. */ - if (size > 0) - { - if (!trad_frame_addr_p (info->saved_regs, S390_SP_REGNUM) - || !trad_frame_addr_p (info->saved_regs, S390_PSWA_REGNUM)) - prev_sp = -1; - } - - /* We use the current value of the frame register as local_base, - and the top of the register save area as frame_base. */ - if (prev_sp != -1) - { - info->frame_base = prev_sp + 16*word_size + 32; - info->local_base = prev_sp - size; - } - - return 1; -} - -static void -s390_backchain_frame_unwind_cache (struct frame_info *this_frame, - struct s390_unwind_cache *info) -{ - struct gdbarch *gdbarch = get_frame_arch (this_frame); - int word_size = gdbarch_ptr_bit (gdbarch) / 8; - enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); - CORE_ADDR backchain; - ULONGEST reg; - LONGEST sp, tmp; - int i; - - /* Set up ABI call-saved/call-clobbered registers. */ - for (i = 0; i < S390_NUM_REGS; i++) - if (!s390_register_call_saved (gdbarch, i)) - trad_frame_set_unknown (info->saved_regs, i); - - /* CC is always call-clobbered. */ - trad_frame_set_unknown (info->saved_regs, S390_PSWM_REGNUM); - - /* Get the backchain. */ - reg = get_frame_register_unsigned (this_frame, S390_SP_REGNUM); - if (!safe_read_memory_integer (reg, word_size, byte_order, &tmp)) - tmp = 0; - backchain = (CORE_ADDR) tmp; - - /* A zero backchain terminates the frame chain. As additional - sanity check, let's verify that the spill slot for SP in the - save area pointed to by the backchain in fact links back to - the save area. */ - if (backchain != 0 - && safe_read_memory_integer (backchain + 15*word_size, - word_size, byte_order, &sp) - && (CORE_ADDR)sp == backchain) - { - /* We don't know which registers were saved, but it will have - to be at least %r14 and %r15. This will allow us to continue - unwinding, but other prev-frame registers may be incorrect ... */ - info->saved_regs[S390_SP_REGNUM].addr = backchain + 15*word_size; - info->saved_regs[S390_RETADDR_REGNUM].addr = backchain + 14*word_size; - - /* Function return will set PC to %r14. */ - info->saved_regs[S390_PSWA_REGNUM] - = info->saved_regs[S390_RETADDR_REGNUM]; - - /* We use the current value of the frame register as local_base, - and the top of the register save area as frame_base. */ - info->frame_base = backchain + 16*word_size + 32; - info->local_base = reg; - } - - info->func = get_frame_pc (this_frame); -} - -static struct s390_unwind_cache * -s390_frame_unwind_cache (struct frame_info *this_frame, - void **this_prologue_cache) -{ - struct s390_unwind_cache *info; - - if (*this_prologue_cache) - return (struct s390_unwind_cache *) *this_prologue_cache; - - info = FRAME_OBSTACK_ZALLOC (struct s390_unwind_cache); - *this_prologue_cache = info; - info->saved_regs = trad_frame_alloc_saved_regs (this_frame); - info->func = -1; - info->frame_base = -1; - info->local_base = -1; - - TRY - { - /* Try to use prologue analysis to fill the unwind cache. - If this fails, fall back to reading the stack backchain. */ - if (!s390_prologue_frame_unwind_cache (this_frame, info)) - s390_backchain_frame_unwind_cache (this_frame, info); - } - CATCH (ex, RETURN_MASK_ERROR) - { - if (ex.error != NOT_AVAILABLE_ERROR) - throw_exception (ex); - } - END_CATCH - - return info; -} - -static void -s390_frame_this_id (struct frame_info *this_frame, - void **this_prologue_cache, - struct frame_id *this_id) -{ - struct s390_unwind_cache *info - = s390_frame_unwind_cache (this_frame, this_prologue_cache); - - if (info->frame_base == -1) - { - if (info->func != -1) - *this_id = frame_id_build_unavailable_stack (info->func); - return; - } - - *this_id = frame_id_build (info->frame_base, info->func); -} - -static struct value * -s390_frame_prev_register (struct frame_info *this_frame, - void **this_prologue_cache, int regnum) -{ - struct s390_unwind_cache *info - = s390_frame_unwind_cache (this_frame, this_prologue_cache); - - return s390_trad_frame_prev_register (this_frame, info->saved_regs, regnum); -} - -static const struct frame_unwind s390_frame_unwind = { - NORMAL_FRAME, - default_frame_unwind_stop_reason, - s390_frame_this_id, - s390_frame_prev_register, - NULL, - default_frame_sniffer -}; - - -/* Code stubs and their stack frames. For things like PLTs and NULL - function calls (where there is no true frame and the return address - is in the RETADDR register). */ - -struct s390_stub_unwind_cache -{ - CORE_ADDR frame_base; - struct trad_frame_saved_reg *saved_regs; -}; - -static struct s390_stub_unwind_cache * -s390_stub_frame_unwind_cache (struct frame_info *this_frame, - void **this_prologue_cache) -{ - struct gdbarch *gdbarch = get_frame_arch (this_frame); - int word_size = gdbarch_ptr_bit (gdbarch) / 8; - struct s390_stub_unwind_cache *info; - ULONGEST reg; - - if (*this_prologue_cache) - return (struct s390_stub_unwind_cache *) *this_prologue_cache; - - info = FRAME_OBSTACK_ZALLOC (struct s390_stub_unwind_cache); - *this_prologue_cache = info; - info->saved_regs = trad_frame_alloc_saved_regs (this_frame); - - /* The return address is in register %r14. */ - info->saved_regs[S390_PSWA_REGNUM].realreg = S390_RETADDR_REGNUM; - - /* Retrieve stack pointer and determine our frame base. */ - reg = get_frame_register_unsigned (this_frame, S390_SP_REGNUM); - info->frame_base = reg + 16*word_size + 32; - - return info; -} - -static void -s390_stub_frame_this_id (struct frame_info *this_frame, - void **this_prologue_cache, - struct frame_id *this_id) -{ - struct s390_stub_unwind_cache *info - = s390_stub_frame_unwind_cache (this_frame, this_prologue_cache); - *this_id = frame_id_build (info->frame_base, get_frame_pc (this_frame)); -} - -static struct value * -s390_stub_frame_prev_register (struct frame_info *this_frame, - void **this_prologue_cache, int regnum) -{ - struct s390_stub_unwind_cache *info - = s390_stub_frame_unwind_cache (this_frame, this_prologue_cache); - return s390_trad_frame_prev_register (this_frame, info->saved_regs, regnum); -} - -static int -s390_stub_frame_sniffer (const struct frame_unwind *self, - struct frame_info *this_frame, - void **this_prologue_cache) -{ - CORE_ADDR addr_in_block; - bfd_byte insn[S390_MAX_INSTR_SIZE]; - - /* If the current PC points to non-readable memory, we assume we - have trapped due to an invalid function pointer call. We handle - the non-existing current function like a PLT stub. */ - addr_in_block = get_frame_address_in_block (this_frame); - if (in_plt_section (addr_in_block) - || s390_readinstruction (insn, get_frame_pc (this_frame)) < 0) - return 1; - return 0; -} - -static const struct frame_unwind s390_stub_frame_unwind = { - NORMAL_FRAME, - default_frame_unwind_stop_reason, - s390_stub_frame_this_id, - s390_stub_frame_prev_register, - NULL, - s390_stub_frame_sniffer -}; - - /* Signal trampoline stack frames. */ struct s390_sigtramp_unwind_cache { @@ -2993,655 +878,6 @@ s390_linux_record_signal (struct gdbarch *gdbarch, struct regcache *regcache, return 0; } -/* Frame base handling. */ - -static CORE_ADDR -s390_frame_base_address (struct frame_info *this_frame, void **this_cache) -{ - struct s390_unwind_cache *info - = s390_frame_unwind_cache (this_frame, this_cache); - return info->frame_base; -} - -static CORE_ADDR -s390_local_base_address (struct frame_info *this_frame, void **this_cache) -{ - struct s390_unwind_cache *info - = s390_frame_unwind_cache (this_frame, this_cache); - return info->local_base; -} - -static const struct frame_base s390_frame_base = { - &s390_frame_unwind, - s390_frame_base_address, - s390_local_base_address, - s390_local_base_address -}; - -static CORE_ADDR -s390_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame) -{ - struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); - ULONGEST pc; - pc = frame_unwind_register_unsigned (next_frame, tdep->pc_regnum); - return gdbarch_addr_bits_remove (gdbarch, pc); -} - -static CORE_ADDR -s390_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame) -{ - ULONGEST sp; - sp = frame_unwind_register_unsigned (next_frame, S390_SP_REGNUM); - return gdbarch_addr_bits_remove (gdbarch, sp); -} - - -/* DWARF-2 frame support. */ - -static struct value * -s390_dwarf2_prev_register (struct frame_info *this_frame, void **this_cache, - int regnum) -{ - return s390_unwind_pseudo_register (this_frame, regnum); -} - -static void -s390_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum, - struct dwarf2_frame_state_reg *reg, - struct frame_info *this_frame) -{ - /* The condition code (and thus PSW mask) is call-clobbered. */ - if (regnum == S390_PSWM_REGNUM) - reg->how = DWARF2_FRAME_REG_UNDEFINED; - - /* The PSW address unwinds to the return address. */ - else if (regnum == S390_PSWA_REGNUM) - reg->how = DWARF2_FRAME_REG_RA; - - /* Fixed registers are call-saved or call-clobbered - depending on the ABI in use. */ - else if (regnum < S390_NUM_REGS) - { - if (s390_register_call_saved (gdbarch, regnum)) - reg->how = DWARF2_FRAME_REG_SAME_VALUE; - else - reg->how = DWARF2_FRAME_REG_UNDEFINED; - } - - /* We install a special function to unwind pseudos. */ - else - { - reg->how = DWARF2_FRAME_REG_FN; - reg->loc.fn = s390_dwarf2_prev_register; - } -} - - -/* Dummy function calls. */ - -/* Unwrap any single-field structs in TYPE and return the effective - "inner" type. E.g., yield "float" for all these cases: - - float x; - struct { float x }; - struct { struct { float x; } x; }; - struct { struct { struct { float x; } x; } x; }; - - However, if an inner type is smaller than MIN_SIZE, abort the - unwrapping. */ - -static struct type * -s390_effective_inner_type (struct type *type, unsigned int min_size) -{ - while (TYPE_CODE (type) == TYPE_CODE_STRUCT - && TYPE_NFIELDS (type) == 1) - { - struct type *inner = check_typedef (TYPE_FIELD_TYPE (type, 0)); - - if (TYPE_LENGTH (inner) < min_size) - break; - type = inner; - } - - return type; -} - -/* Return non-zero if TYPE should be passed like "float" or - "double". */ - -static int -s390_function_arg_float (struct type *type) -{ - /* Note that long double as well as complex types are intentionally - excluded. */ - if (TYPE_LENGTH (type) > 8) - return 0; - - /* A struct containing just a float or double is passed like a float - or double. */ - type = s390_effective_inner_type (type, 0); - - return (TYPE_CODE (type) == TYPE_CODE_FLT - || TYPE_CODE (type) == TYPE_CODE_DECFLOAT); -} - -/* Return non-zero if TYPE should be passed like a vector. */ - -static int -s390_function_arg_vector (struct type *type) -{ - if (TYPE_LENGTH (type) > 16) - return 0; - - /* Structs containing just a vector are passed like a vector. */ - type = s390_effective_inner_type (type, TYPE_LENGTH (type)); - - return TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type); -} - -/* Determine whether N is a power of two. */ - -static int -is_power_of_two (unsigned int n) -{ - return n && ((n & (n - 1)) == 0); -} - -/* For an argument whose type is TYPE and which is not passed like a - float or vector, return non-zero if it should be passed like "int" - or "long long". */ - -static int -s390_function_arg_integer (struct type *type) -{ - enum type_code code = TYPE_CODE (type); - - if (TYPE_LENGTH (type) > 8) - return 0; - - if (code == TYPE_CODE_INT - || code == TYPE_CODE_ENUM - || code == TYPE_CODE_RANGE - || code == TYPE_CODE_CHAR - || code == TYPE_CODE_BOOL - || code == TYPE_CODE_PTR - || TYPE_IS_REFERENCE (type)) - return 1; - - return ((code == TYPE_CODE_UNION || code == TYPE_CODE_STRUCT) - && is_power_of_two (TYPE_LENGTH (type))); -} - -/* Argument passing state: Internal data structure passed to helper - routines of s390_push_dummy_call. */ - -struct s390_arg_state - { - /* Register cache, or NULL, if we are in "preparation mode". */ - struct regcache *regcache; - /* Next available general/floating-point/vector register for - argument passing. */ - int gr, fr, vr; - /* Current pointer to copy area (grows downwards). */ - CORE_ADDR copy; - /* Current pointer to parameter area (grows upwards). */ - CORE_ADDR argp; - }; - -/* Prepare one argument ARG for a dummy call and update the argument - passing state AS accordingly. If the regcache field in AS is set, - operate in "write mode" and write ARG into the inferior. Otherwise - run "preparation mode" and skip all updates to the inferior. */ - -static void -s390_handle_arg (struct s390_arg_state *as, struct value *arg, - struct gdbarch_tdep *tdep, int word_size, - enum bfd_endian byte_order, int is_unnamed) -{ - struct type *type = check_typedef (value_type (arg)); - unsigned int length = TYPE_LENGTH (type); - int write_mode = as->regcache != NULL; - - if (s390_function_arg_float (type)) - { - /* The GNU/Linux for S/390 ABI uses FPRs 0 and 2 to pass - arguments. The GNU/Linux for zSeries ABI uses 0, 2, 4, and - 6. */ - if (as->fr <= (tdep->abi == ABI_LINUX_S390 ? 2 : 6)) - { - /* When we store a single-precision value in an FP register, - it occupies the leftmost bits. */ - if (write_mode) - regcache_cooked_write_part (as->regcache, - S390_F0_REGNUM + as->fr, - 0, length, - value_contents (arg)); - as->fr += 2; - } - else - { - /* When we store a single-precision value in a stack slot, - it occupies the rightmost bits. */ - as->argp = align_up (as->argp + length, word_size); - if (write_mode) - write_memory (as->argp - length, value_contents (arg), - length); - } - } - else if (tdep->vector_abi == S390_VECTOR_ABI_128 - && s390_function_arg_vector (type)) - { - static const char use_vr[] = {24, 26, 28, 30, 25, 27, 29, 31}; - - if (!is_unnamed && as->vr < ARRAY_SIZE (use_vr)) - { - int regnum = S390_V24_REGNUM + use_vr[as->vr] - 24; - - if (write_mode) - regcache_cooked_write_part (as->regcache, regnum, - 0, length, - value_contents (arg)); - as->vr++; - } - else - { - if (write_mode) - write_memory (as->argp, value_contents (arg), length); - as->argp = align_up (as->argp + length, word_size); - } - } - else if (s390_function_arg_integer (type) && length <= word_size) - { - /* Initialize it just to avoid a GCC false warning. */ - ULONGEST val = 0; - - if (write_mode) - { - /* Place value in least significant bits of the register or - memory word and sign- or zero-extend to full word size. - This also applies to a struct or union. */ - val = TYPE_UNSIGNED (type) - ? extract_unsigned_integer (value_contents (arg), - length, byte_order) - : extract_signed_integer (value_contents (arg), - length, byte_order); - } - - if (as->gr <= 6) - { - if (write_mode) - regcache_cooked_write_unsigned (as->regcache, - S390_R0_REGNUM + as->gr, - val); - as->gr++; - } - else - { - if (write_mode) - write_memory_unsigned_integer (as->argp, word_size, - byte_order, val); - as->argp += word_size; - } - } - else if (s390_function_arg_integer (type) && length == 8) - { - if (as->gr <= 5) - { - if (write_mode) - { - regcache_cooked_write (as->regcache, - S390_R0_REGNUM + as->gr, - value_contents (arg)); - regcache_cooked_write (as->regcache, - S390_R0_REGNUM + as->gr + 1, - value_contents (arg) + word_size); - } - as->gr += 2; - } - else - { - /* If we skipped r6 because we couldn't fit a DOUBLE_ARG - in it, then don't go back and use it again later. */ - as->gr = 7; - - if (write_mode) - write_memory (as->argp, value_contents (arg), length); - as->argp += length; - } - } - else - { - /* This argument type is never passed in registers. Place the - value in the copy area and pass a pointer to it. Use 8-byte - alignment as a conservative assumption. */ - as->copy = align_down (as->copy - length, 8); - if (write_mode) - write_memory (as->copy, value_contents (arg), length); - - if (as->gr <= 6) - { - if (write_mode) - regcache_cooked_write_unsigned (as->regcache, - S390_R0_REGNUM + as->gr, - as->copy); - as->gr++; - } - else - { - if (write_mode) - write_memory_unsigned_integer (as->argp, word_size, - byte_order, as->copy); - as->argp += word_size; - } - } -} - -/* Put the actual parameter values pointed to by ARGS[0..NARGS-1] in - place to be passed to a function, as specified by the "GNU/Linux - for S/390 ELF Application Binary Interface Supplement". - - SP is the current stack pointer. We must put arguments, links, - padding, etc. whereever they belong, and return the new stack - pointer value. - - If STRUCT_RETURN is non-zero, then the function we're calling is - going to return a structure by value; STRUCT_ADDR is the address of - a block we've allocated for it on the stack. - - Our caller has taken care of any type promotions needed to satisfy - prototypes or the old K&R argument-passing rules. */ - -static CORE_ADDR -s390_push_dummy_call (struct gdbarch *gdbarch, struct value *function, - struct regcache *regcache, CORE_ADDR bp_addr, - int nargs, struct value **args, CORE_ADDR sp, - int struct_return, CORE_ADDR struct_addr) -{ - struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); - int word_size = gdbarch_ptr_bit (gdbarch) / 8; - enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); - int i; - struct s390_arg_state arg_state, arg_prep; - CORE_ADDR param_area_start, new_sp; - struct type *ftype = check_typedef (value_type (function)); - - if (TYPE_CODE (ftype) == TYPE_CODE_PTR) - ftype = check_typedef (TYPE_TARGET_TYPE (ftype)); - - arg_prep.copy = sp; - arg_prep.gr = struct_return ? 3 : 2; - arg_prep.fr = 0; - arg_prep.vr = 0; - arg_prep.argp = 0; - arg_prep.regcache = NULL; - - /* Initialize arg_state for "preparation mode". */ - arg_state = arg_prep; - - /* Update arg_state.copy with the start of the reference-to-copy area - and arg_state.argp with the size of the parameter area. */ - for (i = 0; i < nargs; i++) - s390_handle_arg (&arg_state, args[i], tdep, word_size, byte_order, - TYPE_VARARGS (ftype) && i >= TYPE_NFIELDS (ftype)); - - param_area_start = align_down (arg_state.copy - arg_state.argp, 8); - - /* Allocate the standard frame areas: the register save area, the - word reserved for the compiler, and the back chain pointer. */ - new_sp = param_area_start - (16 * word_size + 32); - - /* Now we have the final stack pointer. Make sure we didn't - underflow; on 31-bit, this would result in addresses with the - high bit set, which causes confusion elsewhere. Note that if we - error out here, stack and registers remain untouched. */ - if (gdbarch_addr_bits_remove (gdbarch, new_sp) != new_sp) - error (_("Stack overflow")); - - /* Pass the structure return address in general register 2. */ - if (struct_return) - regcache_cooked_write_unsigned (regcache, S390_R2_REGNUM, struct_addr); - - /* Initialize arg_state for "write mode". */ - arg_state = arg_prep; - arg_state.argp = param_area_start; - arg_state.regcache = regcache; - - /* Write all parameters. */ - for (i = 0; i < nargs; i++) - s390_handle_arg (&arg_state, args[i], tdep, word_size, byte_order, - TYPE_VARARGS (ftype) && i >= TYPE_NFIELDS (ftype)); - - /* Store return PSWA. In 31-bit mode, keep addressing mode bit. */ - if (word_size == 4) - { - ULONGEST pswa; - regcache_cooked_read_unsigned (regcache, S390_PSWA_REGNUM, &pswa); - bp_addr = (bp_addr & 0x7fffffff) | (pswa & 0x80000000); - } - regcache_cooked_write_unsigned (regcache, S390_RETADDR_REGNUM, bp_addr); - - /* Store updated stack pointer. */ - regcache_cooked_write_unsigned (regcache, S390_SP_REGNUM, new_sp); - - /* We need to return the 'stack part' of the frame ID, - which is actually the top of the register save area. */ - return param_area_start; -} - -/* Assuming THIS_FRAME is a dummy, return the frame ID of that - dummy frame. The frame ID's base needs to match the TOS value - returned by push_dummy_call, and the PC match the dummy frame's - breakpoint. */ -static struct frame_id -s390_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame) -{ - int word_size = gdbarch_ptr_bit (gdbarch) / 8; - CORE_ADDR sp = get_frame_register_unsigned (this_frame, S390_SP_REGNUM); - sp = gdbarch_addr_bits_remove (gdbarch, sp); - - return frame_id_build (sp + 16*word_size + 32, - get_frame_pc (this_frame)); -} - -static CORE_ADDR -s390_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr) -{ - /* Both the 32- and 64-bit ABI's say that the stack pointer should - always be aligned on an eight-byte boundary. */ - return (addr & -8); -} - - -/* Helper for s390_return_value: Set or retrieve a function return - value if it resides in a register. */ - -static void -s390_register_return_value (struct gdbarch *gdbarch, struct type *type, - struct regcache *regcache, - gdb_byte *out, const gdb_byte *in) -{ - enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); - int word_size = gdbarch_ptr_bit (gdbarch) / 8; - int length = TYPE_LENGTH (type); - int code = TYPE_CODE (type); - - if (code == TYPE_CODE_FLT || code == TYPE_CODE_DECFLOAT) - { - /* Float-like value: left-aligned in f0. */ - if (in != NULL) - regcache_cooked_write_part (regcache, S390_F0_REGNUM, - 0, length, in); - else - regcache_cooked_read_part (regcache, S390_F0_REGNUM, - 0, length, out); - } - else if (code == TYPE_CODE_ARRAY) - { - /* Vector: left-aligned in v24. */ - if (in != NULL) - regcache_cooked_write_part (regcache, S390_V24_REGNUM, - 0, length, in); - else - regcache_cooked_read_part (regcache, S390_V24_REGNUM, - 0, length, out); - } - else if (length <= word_size) - { - /* Integer: zero- or sign-extended in r2. */ - if (out != NULL) - regcache_cooked_read_part (regcache, S390_R2_REGNUM, - word_size - length, length, out); - else if (TYPE_UNSIGNED (type)) - regcache_cooked_write_unsigned - (regcache, S390_R2_REGNUM, - extract_unsigned_integer (in, length, byte_order)); - else - regcache_cooked_write_signed - (regcache, S390_R2_REGNUM, - extract_signed_integer (in, length, byte_order)); - } - else if (length == 2 * word_size) - { - /* Double word: in r2 and r3. */ - if (in != NULL) - { - regcache_cooked_write (regcache, S390_R2_REGNUM, in); - regcache_cooked_write (regcache, S390_R3_REGNUM, - in + word_size); - } - else - { - regcache_cooked_read (regcache, S390_R2_REGNUM, out); - regcache_cooked_read (regcache, S390_R3_REGNUM, - out + word_size); - } - } - else - internal_error (__FILE__, __LINE__, _("invalid return type")); -} - - -/* Implement the 'return_value' gdbarch method. */ - -static enum return_value_convention -s390_return_value (struct gdbarch *gdbarch, struct value *function, - struct type *type, struct regcache *regcache, - gdb_byte *out, const gdb_byte *in) -{ - enum return_value_convention rvc; - - type = check_typedef (type); - - switch (TYPE_CODE (type)) - { - case TYPE_CODE_STRUCT: - case TYPE_CODE_UNION: - case TYPE_CODE_COMPLEX: - rvc = RETURN_VALUE_STRUCT_CONVENTION; - break; - case TYPE_CODE_ARRAY: - rvc = (gdbarch_tdep (gdbarch)->vector_abi == S390_VECTOR_ABI_128 - && TYPE_LENGTH (type) <= 16 && TYPE_VECTOR (type)) - ? RETURN_VALUE_REGISTER_CONVENTION - : RETURN_VALUE_STRUCT_CONVENTION; - break; - default: - rvc = TYPE_LENGTH (type) <= 8 - ? RETURN_VALUE_REGISTER_CONVENTION - : RETURN_VALUE_STRUCT_CONVENTION; - } - - if (in != NULL || out != NULL) - { - if (rvc == RETURN_VALUE_REGISTER_CONVENTION) - s390_register_return_value (gdbarch, type, regcache, out, in); - else if (in != NULL) - error (_("Cannot set function return value.")); - else - error (_("Function return value unknown.")); - } - - return rvc; -} - - -/* Breakpoints. */ -constexpr gdb_byte s390_break_insn[] = { 0x0, 0x1 }; - -typedef BP_MANIPULATION (s390_break_insn) s390_breakpoint; - -/* Address handling. */ - -static CORE_ADDR -s390_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR addr) -{ - return addr & 0x7fffffff; -} - -static int -s390_address_class_type_flags (int byte_size, int dwarf2_addr_class) -{ - if (byte_size == 4) - return TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1; - else - return 0; -} - -static const char * -s390_address_class_type_flags_to_name (struct gdbarch *gdbarch, int type_flags) -{ - if (type_flags & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1) - return "mode32"; - else - return NULL; -} - -static int -s390_address_class_name_to_type_flags (struct gdbarch *gdbarch, - const char *name, - int *type_flags_ptr) -{ - if (strcmp (name, "mode32") == 0) - { - *type_flags_ptr = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1; - return 1; - } - else - return 0; -} - -/* Implement gdbarch_gcc_target_options. GCC does not know "-m32" or - "-mcmodel=large". */ - -static char * -s390_gcc_target_options (struct gdbarch *gdbarch) -{ - return xstrdup (gdbarch_ptr_bit (gdbarch) == 64 ? "-m64" : "-m31"); -} - -/* Implement gdbarch_gnu_triplet_regexp. Target triplets are "s390-*" - for 31-bit and "s390x-*" for 64-bit, while the BFD arch name is - always "s390". Note that an s390x compiler supports "-m31" as - well. */ - -static const char * -s390_gnu_triplet_regexp (struct gdbarch *gdbarch) -{ - return "s390x?"; -} - -/* Implementation of `gdbarch_stap_is_single_operand', as defined in - gdbarch.h. */ - -static int -s390_stap_is_single_operand (struct gdbarch *gdbarch, const char *s) -{ - return ((isdigit (*s) && s[1] == '(' && s[2] == '%') /* Displacement - or indirection. */ - || *s == '%' /* Register access. */ - || isdigit (*s)); /* Literal number. */ -} - /* Process record and replay helpers. */ /* Takes the intermediate sum of address calculations and masks off upper @@ -7824,387 +5060,6 @@ s390_init_linux_record_tdep (struct linux_record_tdep *record_tdep, record_tdep->ioctl_FIOQSIZE = 0x545e; } -/* Validate the range of registers. NAMES must be known at compile time. */ - -#define s390_validate_reg_range(feature, tdesc_data, start, names) \ -do \ -{ \ - for (int i = 0; i < ARRAY_SIZE (names); i++) \ - if (!tdesc_numbered_register (feature, tdesc_data, start + i, names[i])) \ - return false; \ -} \ -while (0) - -/* Validate the target description. Also numbers registers contained in - tdesc. */ - -static bool -s390_tdesc_valid (struct gdbarch_tdep *tdep, - struct tdesc_arch_data *tdesc_data) -{ - static const char *const psw[] = { - "pswm", "pswa" - }; - static const char *const gprs[] = { - "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", - "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15" - }; - static const char *const fprs[] = { - "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", - "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15" - }; - static const char *const acrs[] = { - "acr0", "acr1", "acr2", "acr3", "acr4", "acr5", "acr6", "acr7", - "acr8", "acr9", "acr10", "acr11", "acr12", "acr13", "acr14", "acr15" - }; - static const char *const gprs_lower[] = { - "r0l", "r1l", "r2l", "r3l", "r4l", "r5l", "r6l", "r7l", - "r8l", "r9l", "r10l", "r11l", "r12l", "r13l", "r14l", "r15l" - }; - static const char *const gprs_upper[] = { - "r0h", "r1h", "r2h", "r3h", "r4h", "r5h", "r6h", "r7h", - "r8h", "r9h", "r10h", "r11h", "r12h", "r13h", "r14h", "r15h" - }; - static const char *const tdb_regs[] = { - "tdb0", "tac", "tct", "atia", - "tr0", "tr1", "tr2", "tr3", "tr4", "tr5", "tr6", "tr7", - "tr8", "tr9", "tr10", "tr11", "tr12", "tr13", "tr14", "tr15" - }; - static const char *const vxrs_low[] = { - "v0l", "v1l", "v2l", "v3l", "v4l", "v5l", "v6l", "v7l", "v8l", - "v9l", "v10l", "v11l", "v12l", "v13l", "v14l", "v15l", - }; - static const char *const vxrs_high[] = { - "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23", "v24", - "v25", "v26", "v27", "v28", "v29", "v30", "v31", - }; - static const char *const gs_cb[] = { - "gsd", "gssm", "gsepla", - }; - static const char *const gs_bc[] = { - "bc_gsd", "bc_gssm", "bc_gsepla", - }; - - const struct target_desc *tdesc = tdep->tdesc; - const struct tdesc_feature *feature; - - /* Core registers, i.e. general purpose and PSW. */ - feature = tdesc_find_feature (tdesc, "org.gnu.gdb.s390.core"); - if (feature == NULL) - return false; - - s390_validate_reg_range (feature, tdesc_data, S390_PSWM_REGNUM, psw); - - if (tdesc_unnumbered_register (feature, "r0")) - { - s390_validate_reg_range (feature, tdesc_data, S390_R0_REGNUM, gprs); - } - else - { - tdep->have_upper = true; - s390_validate_reg_range (feature, tdesc_data, S390_R0_REGNUM, - gprs_lower); - s390_validate_reg_range (feature, tdesc_data, S390_R0_UPPER_REGNUM, - gprs_upper); - } - - /* Floating point registers. */ - feature = tdesc_find_feature (tdesc, "org.gnu.gdb.s390.fpr"); - if (feature == NULL) - return false; - - if (!tdesc_numbered_register (feature, tdesc_data, S390_FPC_REGNUM, "fpc")) - return false; - - s390_validate_reg_range (feature, tdesc_data, S390_F0_REGNUM, fprs); - - /* Access control registers. */ - feature = tdesc_find_feature (tdesc, "org.gnu.gdb.s390.acr"); - if (feature == NULL) - return false; - - s390_validate_reg_range (feature, tdesc_data, S390_A0_REGNUM, acrs); - - /* Optional GNU/Linux-specific "registers". */ - feature = tdesc_find_feature (tdesc, "org.gnu.gdb.s390.linux"); - if (feature) - { - tdesc_numbered_register (feature, tdesc_data, - S390_ORIG_R2_REGNUM, "orig_r2"); - - if (tdesc_numbered_register (feature, tdesc_data, - S390_LAST_BREAK_REGNUM, "last_break")) - tdep->have_linux_v1 = true; - - if (tdesc_numbered_register (feature, tdesc_data, - S390_SYSTEM_CALL_REGNUM, "system_call")) - tdep->have_linux_v2 = true; - - if (tdep->have_linux_v2 && !tdep->have_linux_v1) - return false; - } - - /* Transaction diagnostic block. */ - feature = tdesc_find_feature (tdesc, "org.gnu.gdb.s390.tdb"); - if (feature) - { - s390_validate_reg_range (feature, tdesc_data, S390_TDB_DWORD0_REGNUM, - tdb_regs); - tdep->have_tdb = true; - } - - /* Vector registers. */ - feature = tdesc_find_feature (tdesc, "org.gnu.gdb.s390.vx"); - if (feature) - { - s390_validate_reg_range (feature, tdesc_data, S390_V0_LOWER_REGNUM, - vxrs_low); - s390_validate_reg_range (feature, tdesc_data, S390_V16_REGNUM, - vxrs_high); - tdep->have_vx = true; - } - - /* Guarded-storage registers. */ - feature = tdesc_find_feature (tdesc, "org.gnu.gdb.s390.gs"); - if (feature) - { - s390_validate_reg_range (feature, tdesc_data, S390_GSD_REGNUM, gs_cb); - tdep->have_gs = true; - } - - /* Guarded-storage broadcast control. */ - feature = tdesc_find_feature (tdesc, "org.gnu.gdb.s390.gsbc"); - if (feature) - { - if (!tdep->have_gs) - return false; - s390_validate_reg_range (feature, tdesc_data, S390_BC_GSD_REGNUM, - gs_bc); - } - - return true; -} - -/* Allocate and initialize new gdbarch_tdep. Caller is responsible to free - memory after use. */ - -static struct gdbarch_tdep * -s390_gdbarch_tdep_alloc () -{ - struct gdbarch_tdep *tdep = XCNEW (struct gdbarch_tdep); - - tdep->tdesc = NULL; - - tdep->abi = ABI_NONE; - tdep->vector_abi = S390_VECTOR_ABI_NONE; - - tdep->gpr_full_regnum = -1; - tdep->v0_full_regnum = -1; - tdep->pc_regnum = -1; - tdep->cc_regnum = -1; - - tdep->have_upper = false; - tdep->have_linux_v1 = false; - tdep->have_linux_v2 = false; - tdep->have_tdb = false; - tdep->have_vx = false; - tdep->have_gs = false; - - tdep->s390_syscall_record = NULL; - - return tdep; -} - -/* Set up gdbarch struct. */ - -static struct gdbarch * -s390_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) -{ - const struct target_desc *tdesc = info.target_desc; - int first_pseudo_reg, last_pseudo_reg; - static const char *const stap_register_prefixes[] = { "%", NULL }; - static const char *const stap_register_indirection_prefixes[] = { "(", - NULL }; - static const char *const stap_register_indirection_suffixes[] = { ")", - NULL }; - - struct gdbarch_tdep *tdep = s390_gdbarch_tdep_alloc (); - struct gdbarch *gdbarch = gdbarch_alloc (&info, tdep); - struct tdesc_arch_data *tdesc_data = tdesc_data_alloc (); - info.tdesc_data = tdesc_data; - - set_gdbarch_believe_pcc_promotion (gdbarch, 0); - set_gdbarch_char_signed (gdbarch, 0); - - /* S/390 GNU/Linux uses either 64-bit or 128-bit long doubles. - We can safely let them default to 128-bit, since the debug info - will give the size of type actually used in each case. */ - set_gdbarch_long_double_bit (gdbarch, 128); - set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad); - - /* Amount PC must be decremented by after a breakpoint. This is - often the number of bytes returned by gdbarch_breakpoint_from_pc but not - always. */ - set_gdbarch_decr_pc_after_break (gdbarch, 2); - /* Stack grows downward. */ - set_gdbarch_inner_than (gdbarch, core_addr_lessthan); - set_gdbarch_breakpoint_kind_from_pc (gdbarch, s390_breakpoint::kind_from_pc); - set_gdbarch_sw_breakpoint_from_kind (gdbarch, s390_breakpoint::bp_from_kind); - set_gdbarch_software_single_step (gdbarch, s390_software_single_step); - set_gdbarch_displaced_step_hw_singlestep (gdbarch, s390_displaced_step_hw_singlestep); - set_gdbarch_skip_prologue (gdbarch, s390_skip_prologue); - set_gdbarch_stack_frame_destroyed_p (gdbarch, s390_stack_frame_destroyed_p); - - set_gdbarch_num_regs (gdbarch, S390_NUM_REGS); - set_gdbarch_sp_regnum (gdbarch, S390_SP_REGNUM); - set_gdbarch_fp0_regnum (gdbarch, S390_F0_REGNUM); - set_gdbarch_stab_reg_to_regnum (gdbarch, s390_dwarf_reg_to_regnum); - set_gdbarch_dwarf2_reg_to_regnum (gdbarch, s390_dwarf_reg_to_regnum); - set_gdbarch_value_from_register (gdbarch, s390_value_from_register); - set_gdbarch_guess_tracepoint_registers (gdbarch, s390_guess_tracepoint_registers); - set_gdbarch_pseudo_register_read (gdbarch, s390_pseudo_register_read); - set_gdbarch_pseudo_register_write (gdbarch, s390_pseudo_register_write); - set_tdesc_pseudo_register_name (gdbarch, s390_pseudo_register_name); - set_tdesc_pseudo_register_type (gdbarch, s390_pseudo_register_type); - set_tdesc_pseudo_register_reggroup_p (gdbarch, - s390_pseudo_register_reggroup_p); - set_gdbarch_ax_pseudo_register_collect (gdbarch, - s390_ax_pseudo_register_collect); - set_gdbarch_ax_pseudo_register_push_stack - (gdbarch, s390_ax_pseudo_register_push_stack); - set_gdbarch_gen_return_address (gdbarch, s390_gen_return_address); - - /* Inferior function calls. */ - set_gdbarch_push_dummy_call (gdbarch, s390_push_dummy_call); - set_gdbarch_dummy_id (gdbarch, s390_dummy_id); - set_gdbarch_frame_align (gdbarch, s390_frame_align); - set_gdbarch_return_value (gdbarch, s390_return_value); - - /* Frame handling. */ - dwarf2_frame_set_init_reg (gdbarch, s390_dwarf2_frame_init_reg); - dwarf2_frame_set_adjust_regnum (gdbarch, s390_adjust_frame_regnum); - dwarf2_append_unwinders (gdbarch); - set_gdbarch_unwind_pc (gdbarch, s390_unwind_pc); - set_gdbarch_unwind_sp (gdbarch, s390_unwind_sp); - - /* Displaced stepping. */ - set_gdbarch_displaced_step_copy_insn (gdbarch, - s390_displaced_step_copy_insn); - set_gdbarch_displaced_step_fixup (gdbarch, s390_displaced_step_fixup); - set_gdbarch_displaced_step_location (gdbarch, linux_displaced_step_location); - set_gdbarch_max_insn_length (gdbarch, S390_MAX_INSTR_SIZE); - - switch (info.bfd_arch_info->mach) - { - case bfd_mach_s390_31: - set_gdbarch_addr_bits_remove (gdbarch, s390_addr_bits_remove); - break; - - case bfd_mach_s390_64: - set_gdbarch_long_bit (gdbarch, 64); - set_gdbarch_long_long_bit (gdbarch, 64); - set_gdbarch_ptr_bit (gdbarch, 64); - set_gdbarch_address_class_type_flags (gdbarch, - s390_address_class_type_flags); - set_gdbarch_address_class_type_flags_to_name (gdbarch, - s390_address_class_type_flags_to_name); - set_gdbarch_address_class_name_to_type_flags (gdbarch, - s390_address_class_name_to_type_flags); - break; - } - - /* SystemTap functions. */ - set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes); - set_gdbarch_stap_register_indirection_prefixes (gdbarch, - stap_register_indirection_prefixes); - set_gdbarch_stap_register_indirection_suffixes (gdbarch, - stap_register_indirection_suffixes); - - set_gdbarch_disassembler_options (gdbarch, &s390_disassembler_options); - set_gdbarch_valid_disassembler_options (gdbarch, - disassembler_options_s390 ()); - - /* Process record-replay */ - set_gdbarch_process_record (gdbarch, s390_process_record); - - /* Miscellaneous. */ - set_gdbarch_stap_is_single_operand (gdbarch, s390_stap_is_single_operand); - set_gdbarch_gcc_target_options (gdbarch, s390_gcc_target_options); - set_gdbarch_gnu_triplet_regexp (gdbarch, s390_gnu_triplet_regexp); - - /* Initialize the OSABI. */ - gdbarch_init_osabi (info, gdbarch); - - /* Check any target description for validity. */ - gdb_assert (tdesc_has_registers (tdep->tdesc)); - if (!s390_tdesc_valid (tdep, tdesc_data)) - { - tdesc_data_cleanup (tdesc_data); - xfree (tdep); - gdbarch_free (gdbarch); - return NULL; - } - - /* Determine vector ABI. */ -#ifdef HAVE_ELF - if (tdep->have_vx - && info.abfd != NULL - && info.abfd->format == bfd_object - && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour - && bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU, - Tag_GNU_S390_ABI_Vector) == 2) - tdep->vector_abi = S390_VECTOR_ABI_128; -#endif - - /* Find a candidate among extant architectures. */ - for (arches = gdbarch_list_lookup_by_info (arches, &info); - arches != NULL; - arches = gdbarch_list_lookup_by_info (arches->next, &info)) - { - struct gdbarch_tdep *tmp = gdbarch_tdep (arches->gdbarch); - if (!tmp) - continue; - /* A program can 'choose' not to use the vector registers when they - are present. Leading to the same tdesc but different tdep and - thereby a different gdbarch. */ - if (tmp->vector_abi != tdep->vector_abi) - continue; - - tdesc_data_cleanup (tdesc_data); - xfree (tdep); - gdbarch_free (gdbarch); - return arches->gdbarch; - } - - tdesc_use_registers (gdbarch, tdep->tdesc, tdesc_data); - set_gdbarch_register_name (gdbarch, s390_register_name); - - /* Assign pseudo register numbers. */ - first_pseudo_reg = gdbarch_num_regs (gdbarch); - last_pseudo_reg = first_pseudo_reg; - if (tdep->have_upper) - { - tdep->gpr_full_regnum = last_pseudo_reg; - last_pseudo_reg += 16; - } - if (tdep->have_vx) - { - tdep->v0_full_regnum = last_pseudo_reg; - last_pseudo_reg += 16; - } - tdep->pc_regnum = last_pseudo_reg++; - tdep->cc_regnum = last_pseudo_reg++; - set_gdbarch_pc_regnum (gdbarch, tdep->pc_regnum); - set_gdbarch_num_pseudo_regs (gdbarch, last_pseudo_reg - first_pseudo_reg); - - frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer); - frame_unwind_append_unwinder (gdbarch, &s390_stub_frame_unwind); - frame_unwind_append_unwinder (gdbarch, &s390_frame_unwind); - frame_base_set_default (gdbarch, &s390_frame_base); - - return gdbarch; -} - /* Initialize OSABI common for GNU/Linux on 31- and 64-bit systems. */ static void @@ -8216,6 +5071,9 @@ s390_linux_init_abi_any (struct gdbarch_info info, struct gdbarch *gdbarch) linux_init_abi (info, gdbarch); + /* Process record-replay */ + set_gdbarch_process_record (gdbarch, s390_process_record); + /* Register handling. */ set_gdbarch_core_read_description (gdbarch, s390_core_read_description); set_gdbarch_iterate_over_regset_sections (gdbarch, @@ -8281,11 +5139,8 @@ s390_linux_init_abi_64 (struct gdbarch_info info, struct gdbarch *gdbarch) } void -_initialize_s390_tdep (void) +_initialize_s390_linux_tdep (void) { - /* Hook us into the gdbarch mechanism. */ - register_gdbarch_init (bfd_arch_s390, s390_gdbarch_init); - /* Hook us into the OSABI mechanism. */ gdbarch_register_osabi (bfd_arch_s390, bfd_mach_s390_31, GDB_OSABI_LINUX, s390_linux_init_abi_31); diff --git a/gdb/s390-linux-tdep.h b/gdb/s390-linux-tdep.h index ea7ace46dd..6542464951 100644 --- a/gdb/s390-linux-tdep.h +++ b/gdb/s390-linux-tdep.h @@ -1,4 +1,5 @@ -/* Target-dependent code for GDB, the GNU debugger. +/* Target-dependent code for GNU/Linux on s390. + Copyright (C) 2003-2018 Free Software Foundation, Inc. This file is part of GDB. @@ -16,173 +17,8 @@ You should have received a copy of the GNU General Public License along with this program. If not, see . */ -#ifndef S390_TDEP_H -#define S390_TDEP_H - -/* Hardware capabilities. */ - -#ifndef HWCAP_S390_HIGH_GPRS -#define HWCAP_S390_HIGH_GPRS 512 -#endif - -#ifndef HWCAP_S390_TE -#define HWCAP_S390_TE 1024 -#endif - -#ifndef HWCAP_S390_VX -#define HWCAP_S390_VX 2048 -#endif - -#ifndef HWCAP_S390_GS -#define HWCAP_S390_GS 16384 -#endif - -/* Register information. */ - -/* Program Status Word. */ -#define S390_PSWM_REGNUM 0 -#define S390_PSWA_REGNUM 1 -/* General Purpose Registers. */ -#define S390_R0_REGNUM 2 -#define S390_R1_REGNUM 3 -#define S390_R2_REGNUM 4 -#define S390_R3_REGNUM 5 -#define S390_R4_REGNUM 6 -#define S390_R5_REGNUM 7 -#define S390_R6_REGNUM 8 -#define S390_R7_REGNUM 9 -#define S390_R8_REGNUM 10 -#define S390_R9_REGNUM 11 -#define S390_R10_REGNUM 12 -#define S390_R11_REGNUM 13 -#define S390_R12_REGNUM 14 -#define S390_R13_REGNUM 15 -#define S390_R14_REGNUM 16 -#define S390_R15_REGNUM 17 -/* Access Registers. */ -#define S390_A0_REGNUM 18 -#define S390_A1_REGNUM 19 -#define S390_A2_REGNUM 20 -#define S390_A3_REGNUM 21 -#define S390_A4_REGNUM 22 -#define S390_A5_REGNUM 23 -#define S390_A6_REGNUM 24 -#define S390_A7_REGNUM 25 -#define S390_A8_REGNUM 26 -#define S390_A9_REGNUM 27 -#define S390_A10_REGNUM 28 -#define S390_A11_REGNUM 29 -#define S390_A12_REGNUM 30 -#define S390_A13_REGNUM 31 -#define S390_A14_REGNUM 32 -#define S390_A15_REGNUM 33 -/* Floating Point Control Word. */ -#define S390_FPC_REGNUM 34 -/* Floating Point Registers. */ -#define S390_F0_REGNUM 35 -#define S390_F1_REGNUM 36 -#define S390_F2_REGNUM 37 -#define S390_F3_REGNUM 38 -#define S390_F4_REGNUM 39 -#define S390_F5_REGNUM 40 -#define S390_F6_REGNUM 41 -#define S390_F7_REGNUM 42 -#define S390_F8_REGNUM 43 -#define S390_F9_REGNUM 44 -#define S390_F10_REGNUM 45 -#define S390_F11_REGNUM 46 -#define S390_F12_REGNUM 47 -#define S390_F13_REGNUM 48 -#define S390_F14_REGNUM 49 -#define S390_F15_REGNUM 50 -/* General Purpose Register Upper Halves. */ -#define S390_R0_UPPER_REGNUM 51 -#define S390_R1_UPPER_REGNUM 52 -#define S390_R2_UPPER_REGNUM 53 -#define S390_R3_UPPER_REGNUM 54 -#define S390_R4_UPPER_REGNUM 55 -#define S390_R5_UPPER_REGNUM 56 -#define S390_R6_UPPER_REGNUM 57 -#define S390_R7_UPPER_REGNUM 58 -#define S390_R8_UPPER_REGNUM 59 -#define S390_R9_UPPER_REGNUM 60 -#define S390_R10_UPPER_REGNUM 61 -#define S390_R11_UPPER_REGNUM 62 -#define S390_R12_UPPER_REGNUM 63 -#define S390_R13_UPPER_REGNUM 64 -#define S390_R14_UPPER_REGNUM 65 -#define S390_R15_UPPER_REGNUM 66 -/* GNU/Linux-specific optional registers. */ -#define S390_ORIG_R2_REGNUM 67 -#define S390_LAST_BREAK_REGNUM 68 -#define S390_SYSTEM_CALL_REGNUM 69 -/* Transaction diagnostic block. */ -#define S390_TDB_DWORD0_REGNUM 70 -#define S390_TDB_ABORT_CODE_REGNUM 71 -#define S390_TDB_CONFLICT_TOKEN_REGNUM 72 -#define S390_TDB_ATIA_REGNUM 73 -#define S390_TDB_R0_REGNUM 74 -#define S390_TDB_R1_REGNUM 75 -#define S390_TDB_R2_REGNUM 76 -#define S390_TDB_R3_REGNUM 77 -#define S390_TDB_R4_REGNUM 78 -#define S390_TDB_R5_REGNUM 79 -#define S390_TDB_R6_REGNUM 80 -#define S390_TDB_R7_REGNUM 81 -#define S390_TDB_R8_REGNUM 82 -#define S390_TDB_R9_REGNUM 83 -#define S390_TDB_R10_REGNUM 84 -#define S390_TDB_R11_REGNUM 85 -#define S390_TDB_R12_REGNUM 86 -#define S390_TDB_R13_REGNUM 87 -#define S390_TDB_R14_REGNUM 88 -#define S390_TDB_R15_REGNUM 89 -/* Vector registers. */ -#define S390_V0_LOWER_REGNUM 90 -#define S390_V1_LOWER_REGNUM 91 -#define S390_V2_LOWER_REGNUM 92 -#define S390_V3_LOWER_REGNUM 93 -#define S390_V4_LOWER_REGNUM 94 -#define S390_V5_LOWER_REGNUM 95 -#define S390_V6_LOWER_REGNUM 96 -#define S390_V7_LOWER_REGNUM 97 -#define S390_V8_LOWER_REGNUM 98 -#define S390_V9_LOWER_REGNUM 99 -#define S390_V10_LOWER_REGNUM 100 -#define S390_V11_LOWER_REGNUM 101 -#define S390_V12_LOWER_REGNUM 102 -#define S390_V13_LOWER_REGNUM 103 -#define S390_V14_LOWER_REGNUM 104 -#define S390_V15_LOWER_REGNUM 105 -#define S390_V16_REGNUM 106 -#define S390_V17_REGNUM 107 -#define S390_V18_REGNUM 108 -#define S390_V19_REGNUM 109 -#define S390_V20_REGNUM 110 -#define S390_V21_REGNUM 111 -#define S390_V22_REGNUM 112 -#define S390_V23_REGNUM 113 -#define S390_V24_REGNUM 114 -#define S390_V25_REGNUM 115 -#define S390_V26_REGNUM 116 -#define S390_V27_REGNUM 117 -#define S390_V28_REGNUM 118 -#define S390_V29_REGNUM 119 -#define S390_V30_REGNUM 120 -#define S390_V31_REGNUM 121 -#define S390_GSD_REGNUM 122 -#define S390_GSSM_REGNUM 123 -#define S390_GSEPLA_REGNUM 124 -#define S390_BC_GSD_REGNUM 125 -#define S390_BC_GSSM_REGNUM 126 -#define S390_BC_GSEPLA_REGNUM 127 -/* Total. */ -#define S390_NUM_REGS 128 - -/* Special register usage. */ -#define S390_SP_REGNUM S390_R15_REGNUM -#define S390_RETADDR_REGNUM S390_R14_REGNUM -#define S390_FRAME_REGNUM S390_R11_REGNUM +#ifndef S390_LINUX_TDEP_H +#define S390_LINUX_TDEP_H #define S390_IS_GREGSET_REGNUM(i) \ (((i) >= S390_PSWM_REGNUM && (i) <= S390_A15_REGNUM) \ @@ -195,7 +31,7 @@ #define S390_IS_TDBREGSET_REGNUM(i) \ ((i) >= S390_TDB_DWORD0_REGNUM && (i) <= S390_TDB_R15_REGNUM) -/* Core file register sets, defined in s390-tdep.c. */ +/* Core file register sets, defined in s390-linux-tdep.c. */ #define s390_sizeof_gregset 0x90 #define s390x_sizeof_gregset 0xd8 extern const struct regset s390_gregset; @@ -230,4 +66,4 @@ extern struct target_desc *tdesc_s390x_vx_linux64; extern struct target_desc *tdesc_s390x_tevx_linux64; extern struct target_desc *tdesc_s390x_gs_linux64; -#endif +#endif /* S390_LINUX_TDEP_H */ diff --git a/gdb/s390-tdep.c b/gdb/s390-tdep.c new file mode 100644 index 0000000000..c2b689859b --- /dev/null +++ b/gdb/s390-tdep.c @@ -0,0 +1,3160 @@ +/* Target-dependent code for s390. + + Copyright (C) 2001-2018 Free Software Foundation, Inc. + + This file is part of GDB. + + This program is free software; you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation; either version 3 of the License, or + (at your option) any later version. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with this program. If not, see . */ + +#include "defs.h" + +#include "arch-utils.h" +#include "ax-gdb.h" +#include "dwarf2-frame.h" +#include "elf/s390.h" +#include "elf-bfd.h" +#include "frame-base.h" +#include "frame-unwind.h" +#include "gdbarch.h" +#include "gdbcore.h" +#include "infrun.h" +#include "linux-tdep.h" +#include "objfiles.h" +#include "osabi.h" +#include "record-full.h" +#include "regcache.h" +#include "reggroups.h" +#include "s390-tdep.h" +#include "target-descriptions.h" +#include "trad-frame.h" +#include "value.h" + +/* Holds the current set of options to be passed to the disassembler. */ +static char *s390_disassembler_options; + +/* Breakpoints. */ + +constexpr gdb_byte s390_break_insn[] = { 0x0, 0x1 }; + +typedef BP_MANIPULATION (s390_break_insn) s390_breakpoint; + +/* Decoding S/390 instructions. */ + +/* Read a single instruction from address AT. */ + +static int +s390_readinstruction (bfd_byte instr[], CORE_ADDR at) +{ + static int s390_instrlen[] = { 2, 4, 4, 6 }; + int instrlen; + + if (target_read_memory (at, &instr[0], 2)) + return -1; + instrlen = s390_instrlen[instr[0] >> 6]; + if (instrlen > 2) + { + if (target_read_memory (at + 2, &instr[2], instrlen - 2)) + return -1; + } + return instrlen; +} + +/* The functions below are for recognizing and decoding S/390 + instructions of various formats. Each of them checks whether INSN + is an instruction of the given format, with the specified opcodes. + If it is, it sets the remaining arguments to the values of the + instruction's fields, and returns a non-zero value; otherwise, it + returns zero. + + These functions' arguments appear in the order they appear in the + instruction, not in the machine-language form. So, opcodes always + come first, even though they're sometimes scattered around the + instructions. And displacements appear before base and extension + registers, as they do in the assembly syntax, not at the end, as + they do in the machine language. + + Test for RI instruction format. */ + +static int +is_ri (bfd_byte *insn, int op1, int op2, unsigned int *r1, int *i2) +{ + if (insn[0] == op1 && (insn[1] & 0xf) == op2) + { + *r1 = (insn[1] >> 4) & 0xf; + /* i2 is a 16-bit signed quantity. */ + *i2 = (((insn[2] << 8) | insn[3]) ^ 0x8000) - 0x8000; + return 1; + } + else + return 0; +} + +/* Test for RIL instruction format. See comment on is_ri for details. */ + +static int +is_ril (bfd_byte *insn, int op1, int op2, + unsigned int *r1, int *i2) +{ + if (insn[0] == op1 && (insn[1] & 0xf) == op2) + { + *r1 = (insn[1] >> 4) & 0xf; + /* i2 is a signed quantity. If the host 'int' is 32 bits long, + no sign extension is necessary, but we don't want to assume + that. */ + *i2 = (((insn[2] << 24) + | (insn[3] << 16) + | (insn[4] << 8) + | (insn[5])) ^ 0x80000000) - 0x80000000; + return 1; + } + else + return 0; +} + +/* Test for RR instruction format. See comment on is_ri for details. */ + +static int +is_rr (bfd_byte *insn, int op, unsigned int *r1, unsigned int *r2) +{ + if (insn[0] == op) + { + *r1 = (insn[1] >> 4) & 0xf; + *r2 = insn[1] & 0xf; + return 1; + } + else + return 0; +} + +/* Test for RRE instruction format. See comment on is_ri for details. */ + +static int +is_rre (bfd_byte *insn, int op, unsigned int *r1, unsigned int *r2) +{ + if (((insn[0] << 8) | insn[1]) == op) + { + /* Yes, insn[3]. insn[2] is unused in RRE format. */ + *r1 = (insn[3] >> 4) & 0xf; + *r2 = insn[3] & 0xf; + return 1; + } + else + return 0; +} + +/* Test for RS instruction format. See comment on is_ri for details. */ + +static int +is_rs (bfd_byte *insn, int op, + unsigned int *r1, unsigned int *r3, int *d2, unsigned int *b2) +{ + if (insn[0] == op) + { + *r1 = (insn[1] >> 4) & 0xf; + *r3 = insn[1] & 0xf; + *b2 = (insn[2] >> 4) & 0xf; + *d2 = ((insn[2] & 0xf) << 8) | insn[3]; + return 1; + } + else + return 0; +} + +/* Test for RSY instruction format. See comment on is_ri for details. */ + +static int +is_rsy (bfd_byte *insn, int op1, int op2, + unsigned int *r1, unsigned int *r3, int *d2, unsigned int *b2) +{ + if (insn[0] == op1 + && insn[5] == op2) + { + *r1 = (insn[1] >> 4) & 0xf; + *r3 = insn[1] & 0xf; + *b2 = (insn[2] >> 4) & 0xf; + /* The 'long displacement' is a 20-bit signed integer. */ + *d2 = ((((insn[2] & 0xf) << 8) | insn[3] | (insn[4] << 12)) + ^ 0x80000) - 0x80000; + return 1; + } + else + return 0; +} + +/* Test for RX instruction format. See comment on is_ri for details. */ + +static int +is_rx (bfd_byte *insn, int op, + unsigned int *r1, int *d2, unsigned int *x2, unsigned int *b2) +{ + if (insn[0] == op) + { + *r1 = (insn[1] >> 4) & 0xf; + *x2 = insn[1] & 0xf; + *b2 = (insn[2] >> 4) & 0xf; + *d2 = ((insn[2] & 0xf) << 8) | insn[3]; + return 1; + } + else + return 0; +} + +/* Test for RXY instruction format. See comment on is_ri for details. */ + +static int +is_rxy (bfd_byte *insn, int op1, int op2, + unsigned int *r1, int *d2, unsigned int *x2, unsigned int *b2) +{ + if (insn[0] == op1 + && insn[5] == op2) + { + *r1 = (insn[1] >> 4) & 0xf; + *x2 = insn[1] & 0xf; + *b2 = (insn[2] >> 4) & 0xf; + /* The 'long displacement' is a 20-bit signed integer. */ + *d2 = ((((insn[2] & 0xf) << 8) | insn[3] | (insn[4] << 12)) + ^ 0x80000) - 0x80000; + return 1; + } + else + return 0; +} + +/* A helper for s390_software_single_step, decides if an instruction + is a partial-execution instruction that needs to be executed until + completion when in record mode. If it is, returns 1 and writes + instruction length to a pointer. */ + +static int +s390_is_partial_instruction (struct gdbarch *gdbarch, CORE_ADDR loc, int *len) +{ + enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); + uint16_t insn; + + insn = read_memory_integer (loc, 2, byte_order); + + switch (insn >> 8) + { + case 0xa8: /* MVCLE */ + *len = 4; + return 1; + + case 0xeb: + { + insn = read_memory_integer (loc + 4, 2, byte_order); + if ((insn & 0xff) == 0x8e) + { + /* MVCLU */ + *len = 6; + return 1; + } + } + break; + } + + switch (insn) + { + case 0xb255: /* MVST */ + case 0xb263: /* CMPSC */ + case 0xb2a5: /* TRE */ + case 0xb2a6: /* CU21 */ + case 0xb2a7: /* CU12 */ + case 0xb9b0: /* CU14 */ + case 0xb9b1: /* CU24 */ + case 0xb9b2: /* CU41 */ + case 0xb9b3: /* CU42 */ + case 0xb92a: /* KMF */ + case 0xb92b: /* KMO */ + case 0xb92f: /* KMC */ + case 0xb92d: /* KMCTR */ + case 0xb92e: /* KM */ + case 0xb93c: /* PPNO */ + case 0xb990: /* TRTT */ + case 0xb991: /* TRTO */ + case 0xb992: /* TROT */ + case 0xb993: /* TROO */ + *len = 4; + return 1; + } + + return 0; +} + +/* Implement the "software_single_step" gdbarch method, needed to single step + through instructions like MVCLE in record mode, to make sure they are + executed to completion. Without that, record will save the full length + of destination buffer on every iteration, even though the CPU will only + process about 4kiB of it each time, leading to O(n**2) memory and time + complexity. */ + +static std::vector +s390_software_single_step (struct regcache *regcache) +{ + struct gdbarch *gdbarch = regcache->arch (); + CORE_ADDR loc = regcache_read_pc (regcache); + enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); + int len; + uint16_t insn; + + /* Special handling only if recording. */ + if (!record_full_is_used ()) + return {}; + + /* First, match a partial instruction. */ + if (!s390_is_partial_instruction (gdbarch, loc, &len)) + return {}; + + loc += len; + + /* Second, look for a branch back to it. */ + insn = read_memory_integer (loc, 2, byte_order); + if (insn != 0xa714) /* BRC with mask 1 */ + return {}; + + insn = read_memory_integer (loc + 2, 2, byte_order); + if (insn != (uint16_t) -(len / 2)) + return {}; + + loc += 4; + + /* Found it, step past the whole thing. */ + return {loc}; +} + +/* Displaced stepping. */ + +/* Return true if INSN is a non-branch RIL-b or RIL-c format + instruction. */ + +static int +is_non_branch_ril (gdb_byte *insn) +{ + gdb_byte op1 = insn[0]; + + if (op1 == 0xc4) + { + gdb_byte op2 = insn[1] & 0x0f; + + switch (op2) + { + case 0x02: /* llhrl */ + case 0x04: /* lghrl */ + case 0x05: /* lhrl */ + case 0x06: /* llghrl */ + case 0x07: /* sthrl */ + case 0x08: /* lgrl */ + case 0x0b: /* stgrl */ + case 0x0c: /* lgfrl */ + case 0x0d: /* lrl */ + case 0x0e: /* llgfrl */ + case 0x0f: /* strl */ + return 1; + } + } + else if (op1 == 0xc6) + { + gdb_byte op2 = insn[1] & 0x0f; + + switch (op2) + { + case 0x00: /* exrl */ + case 0x02: /* pfdrl */ + case 0x04: /* cghrl */ + case 0x05: /* chrl */ + case 0x06: /* clghrl */ + case 0x07: /* clhrl */ + case 0x08: /* cgrl */ + case 0x0a: /* clgrl */ + case 0x0c: /* cgfrl */ + case 0x0d: /* crl */ + case 0x0e: /* clgfrl */ + case 0x0f: /* clrl */ + return 1; + } + } + + return 0; +} + +typedef buf_displaced_step_closure s390_displaced_step_closure; + +/* Implementation of gdbarch_displaced_step_copy_insn. */ + +static struct displaced_step_closure * +s390_displaced_step_copy_insn (struct gdbarch *gdbarch, + CORE_ADDR from, CORE_ADDR to, + struct regcache *regs) +{ + size_t len = gdbarch_max_insn_length (gdbarch); + std::unique_ptr closure + (new s390_displaced_step_closure (len)); + gdb_byte *buf = closure->buf.data (); + + read_memory (from, buf, len); + + /* Adjust the displacement field of PC-relative RIL instructions, + except branches. The latter are handled in the fixup hook. */ + if (is_non_branch_ril (buf)) + { + LONGEST offset; + + offset = extract_signed_integer (buf + 2, 4, BFD_ENDIAN_BIG); + offset = (from - to + offset * 2) / 2; + + /* If the instruction is too far from the jump pad, punt. This + will usually happen with instructions in shared libraries. + We could probably support these by rewriting them to be + absolute or fully emulating them. */ + if (offset < INT32_MIN || offset > INT32_MAX) + { + /* Let the core fall back to stepping over the breakpoint + in-line. */ + if (debug_displaced) + { + fprintf_unfiltered (gdb_stdlog, + "displaced: can't displaced step " + "RIL instruction: offset %s out of range\n", + plongest (offset)); + } + + return NULL; + } + + store_signed_integer (buf + 2, 4, BFD_ENDIAN_BIG, offset); + } + + write_memory (to, buf, len); + + if (debug_displaced) + { + fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ", + paddress (gdbarch, from), paddress (gdbarch, to)); + displaced_step_dump_bytes (gdb_stdlog, buf, len); + } + + return closure.release (); +} + +/* Fix up the state of registers and memory after having single-stepped + a displaced instruction. */ + +static void +s390_displaced_step_fixup (struct gdbarch *gdbarch, + struct displaced_step_closure *closure_, + CORE_ADDR from, CORE_ADDR to, + struct regcache *regs) +{ + /* Our closure is a copy of the instruction. */ + s390_displaced_step_closure *closure + = (s390_displaced_step_closure *) closure_; + gdb_byte *insn = closure->buf.data (); + static int s390_instrlen[] = { 2, 4, 4, 6 }; + int insnlen = s390_instrlen[insn[0] >> 6]; + + /* Fields for various kinds of instructions. */ + unsigned int b2, r1, r2, x2, r3; + int i2, d2; + + /* Get current PC and addressing mode bit. */ + CORE_ADDR pc = regcache_read_pc (regs); + ULONGEST amode = 0; + + if (register_size (gdbarch, S390_PSWA_REGNUM) == 4) + { + regcache_cooked_read_unsigned (regs, S390_PSWA_REGNUM, &amode); + amode &= 0x80000000; + } + + if (debug_displaced) + fprintf_unfiltered (gdb_stdlog, + "displaced: (s390) fixup (%s, %s) pc %s len %d amode 0x%x\n", + paddress (gdbarch, from), paddress (gdbarch, to), + paddress (gdbarch, pc), insnlen, (int) amode); + + /* Handle absolute branch and save instructions. */ + if (is_rr (insn, op_basr, &r1, &r2) + || is_rx (insn, op_bas, &r1, &d2, &x2, &b2)) + { + /* Recompute saved return address in R1. */ + regcache_cooked_write_unsigned (regs, S390_R0_REGNUM + r1, + amode | (from + insnlen)); + } + + /* Handle absolute branch instructions. */ + else if (is_rr (insn, op_bcr, &r1, &r2) + || is_rx (insn, op_bc, &r1, &d2, &x2, &b2) + || is_rr (insn, op_bctr, &r1, &r2) + || is_rre (insn, op_bctgr, &r1, &r2) + || is_rx (insn, op_bct, &r1, &d2, &x2, &b2) + || is_rxy (insn, op1_bctg, op2_brctg, &r1, &d2, &x2, &b2) + || is_rs (insn, op_bxh, &r1, &r3, &d2, &b2) + || is_rsy (insn, op1_bxhg, op2_bxhg, &r1, &r3, &d2, &b2) + || is_rs (insn, op_bxle, &r1, &r3, &d2, &b2) + || is_rsy (insn, op1_bxleg, op2_bxleg, &r1, &r3, &d2, &b2)) + { + /* Update PC iff branch was *not* taken. */ + if (pc == to + insnlen) + regcache_write_pc (regs, from + insnlen); + } + + /* Handle PC-relative branch and save instructions. */ + else if (is_ri (insn, op1_bras, op2_bras, &r1, &i2) + || is_ril (insn, op1_brasl, op2_brasl, &r1, &i2)) + { + /* Update PC. */ + regcache_write_pc (regs, pc - to + from); + /* Recompute saved return address in R1. */ + regcache_cooked_write_unsigned (regs, S390_R0_REGNUM + r1, + amode | (from + insnlen)); + } + + /* Handle LOAD ADDRESS RELATIVE LONG. */ + else if (is_ril (insn, op1_larl, op2_larl, &r1, &i2)) + { + /* Update PC. */ + regcache_write_pc (regs, from + insnlen); + /* Recompute output address in R1. */ + regcache_cooked_write_unsigned (regs, S390_R0_REGNUM + r1, + amode | (from + i2 * 2)); + } + + /* If we executed a breakpoint instruction, point PC right back at it. */ + else if (insn[0] == 0x0 && insn[1] == 0x1) + regcache_write_pc (regs, from); + + /* For any other insn, adjust PC by negated displacement. PC then + points right after the original instruction, except for PC-relative + branches, where it points to the adjusted branch target. */ + else + regcache_write_pc (regs, pc - to + from); + + if (debug_displaced) + fprintf_unfiltered (gdb_stdlog, + "displaced: (s390) pc is now %s\n", + paddress (gdbarch, regcache_read_pc (regs))); +} + +/* Implement displaced_step_hw_singlestep gdbarch method. */ + +static int +s390_displaced_step_hw_singlestep (struct gdbarch *gdbarch, + struct displaced_step_closure *closure) +{ + return 1; +} + +/* Prologue analysis. */ + +struct s390_prologue_data { + + /* The stack. */ + struct pv_area *stack; + + /* The size and byte-order of a GPR or FPR. */ + int gpr_size; + int fpr_size; + enum bfd_endian byte_order; + + /* The general-purpose registers. */ + pv_t gpr[S390_NUM_GPRS]; + + /* The floating-point registers. */ + pv_t fpr[S390_NUM_FPRS]; + + /* The offset relative to the CFA where the incoming GPR N was saved + by the function prologue. 0 if not saved or unknown. */ + int gpr_slot[S390_NUM_GPRS]; + + /* Likewise for FPRs. */ + int fpr_slot[S390_NUM_FPRS]; + + /* Nonzero if the backchain was saved. This is assumed to be the + case when the incoming SP is saved at the current SP location. */ + int back_chain_saved_p; +}; + +/* Return the effective address for an X-style instruction, like: + + L R1, D2(X2, B2) + + Here, X2 and B2 are registers, and D2 is a signed 20-bit + constant; the effective address is the sum of all three. If either + X2 or B2 are zero, then it doesn't contribute to the sum --- this + means that r0 can't be used as either X2 or B2. */ + +static pv_t +s390_addr (struct s390_prologue_data *data, + int d2, unsigned int x2, unsigned int b2) +{ + pv_t result; + + result = pv_constant (d2); + if (x2) + result = pv_add (result, data->gpr[x2]); + if (b2) + result = pv_add (result, data->gpr[b2]); + + return result; +} + +/* Do a SIZE-byte store of VALUE to D2(X2,B2). */ + +static void +s390_store (struct s390_prologue_data *data, + int d2, unsigned int x2, unsigned int b2, CORE_ADDR size, + pv_t value) +{ + pv_t addr = s390_addr (data, d2, x2, b2); + pv_t offset; + + /* Check whether we are storing the backchain. */ + offset = pv_subtract (data->gpr[S390_SP_REGNUM - S390_R0_REGNUM], addr); + + if (pv_is_constant (offset) && offset.k == 0) + if (size == data->gpr_size + && pv_is_register_k (value, S390_SP_REGNUM, 0)) + { + data->back_chain_saved_p = 1; + return; + } + + /* Check whether we are storing a register into the stack. */ + if (!data->stack->store_would_trash (addr)) + data->stack->store (addr, size, value); + + /* Note: If this is some store we cannot identify, you might think we + should forget our cached values, as any of those might have been hit. + + However, we make the assumption that the register save areas are only + ever stored to once in any given function, and we do recognize these + stores. Thus every store we cannot recognize does not hit our data. */ +} + +/* Do a SIZE-byte load from D2(X2,B2). */ + +static pv_t +s390_load (struct s390_prologue_data *data, + int d2, unsigned int x2, unsigned int b2, CORE_ADDR size) + +{ + pv_t addr = s390_addr (data, d2, x2, b2); + + /* If it's a load from an in-line constant pool, then we can + simulate that, under the assumption that the code isn't + going to change between the time the processor actually + executed it creating the current frame, and the time when + we're analyzing the code to unwind past that frame. */ + if (pv_is_constant (addr)) + { + struct target_section *secp; + secp = target_section_by_addr (¤t_target, addr.k); + if (secp != NULL + && (bfd_get_section_flags (secp->the_bfd_section->owner, + secp->the_bfd_section) + & SEC_READONLY)) + return pv_constant (read_memory_integer (addr.k, size, + data->byte_order)); + } + + /* Check whether we are accessing one of our save slots. */ + return data->stack->fetch (addr, size); +} + +/* Function for finding saved registers in a 'struct pv_area'; we pass + this to pv_area::scan. + + If VALUE is a saved register, ADDR says it was saved at a constant + offset from the frame base, and SIZE indicates that the whole + register was saved, record its offset in the reg_offset table in + PROLOGUE_UNTYPED. */ + +static void +s390_check_for_saved (void *data_untyped, pv_t addr, + CORE_ADDR size, pv_t value) +{ + struct s390_prologue_data *data = (struct s390_prologue_data *) data_untyped; + int i, offset; + + if (!pv_is_register (addr, S390_SP_REGNUM)) + return; + + offset = 16 * data->gpr_size + 32 - addr.k; + + /* If we are storing the original value of a register, we want to + record the CFA offset. If the same register is stored multiple + times, the stack slot with the highest address counts. */ + + for (i = 0; i < S390_NUM_GPRS; i++) + if (size == data->gpr_size + && pv_is_register_k (value, S390_R0_REGNUM + i, 0)) + if (data->gpr_slot[i] == 0 + || data->gpr_slot[i] > offset) + { + data->gpr_slot[i] = offset; + return; + } + + for (i = 0; i < S390_NUM_FPRS; i++) + if (size == data->fpr_size + && pv_is_register_k (value, S390_F0_REGNUM + i, 0)) + if (data->fpr_slot[i] == 0 + || data->fpr_slot[i] > offset) + { + data->fpr_slot[i] = offset; + return; + } +} + +/* Analyze the prologue of the function starting at START_PC, continuing at + most until CURRENT_PC. Initialize DATA to hold all information we find + out about the state of the registers and stack slots. Return the address + of the instruction after the last one that changed the SP, FP, or back + chain; or zero on error. */ + +static CORE_ADDR +s390_analyze_prologue (struct gdbarch *gdbarch, + CORE_ADDR start_pc, + CORE_ADDR current_pc, + struct s390_prologue_data *data) +{ + int word_size = gdbarch_ptr_bit (gdbarch) / 8; + + /* Our return value: + The address of the instruction after the last one that changed + the SP, FP, or back chain; zero if we got an error trying to + read memory. */ + CORE_ADDR result = start_pc; + + /* The current PC for our abstract interpretation. */ + CORE_ADDR pc; + + /* The address of the next instruction after that. */ + CORE_ADDR next_pc; + + pv_area stack (S390_SP_REGNUM, gdbarch_addr_bit (gdbarch)); + scoped_restore restore_stack = make_scoped_restore (&data->stack, &stack); + + /* Set up everything's initial value. */ + { + int i; + + /* For the purpose of prologue tracking, we consider the GPR size to + be equal to the ABI word size, even if it is actually larger + (i.e. when running a 32-bit binary under a 64-bit kernel). */ + data->gpr_size = word_size; + data->fpr_size = 8; + data->byte_order = gdbarch_byte_order (gdbarch); + + for (i = 0; i < S390_NUM_GPRS; i++) + data->gpr[i] = pv_register (S390_R0_REGNUM + i, 0); + + for (i = 0; i < S390_NUM_FPRS; i++) + data->fpr[i] = pv_register (S390_F0_REGNUM + i, 0); + + for (i = 0; i < S390_NUM_GPRS; i++) + data->gpr_slot[i] = 0; + + for (i = 0; i < S390_NUM_FPRS; i++) + data->fpr_slot[i] = 0; + + data->back_chain_saved_p = 0; + } + + /* Start interpreting instructions, until we hit the frame's + current PC or the first branch instruction. */ + for (pc = start_pc; pc > 0 && pc < current_pc; pc = next_pc) + { + bfd_byte insn[S390_MAX_INSTR_SIZE]; + int insn_len = s390_readinstruction (insn, pc); + + bfd_byte dummy[S390_MAX_INSTR_SIZE] = { 0 }; + bfd_byte *insn32 = word_size == 4 ? insn : dummy; + bfd_byte *insn64 = word_size == 8 ? insn : dummy; + + /* Fields for various kinds of instructions. */ + unsigned int b2, r1, r2, x2, r3; + int i2, d2; + + /* The values of SP and FP before this instruction, + for detecting instructions that change them. */ + pv_t pre_insn_sp, pre_insn_fp; + /* Likewise for the flag whether the back chain was saved. */ + int pre_insn_back_chain_saved_p; + + /* If we got an error trying to read the instruction, report it. */ + if (insn_len < 0) + { + result = 0; + break; + } + + next_pc = pc + insn_len; + + pre_insn_sp = data->gpr[S390_SP_REGNUM - S390_R0_REGNUM]; + pre_insn_fp = data->gpr[S390_FRAME_REGNUM - S390_R0_REGNUM]; + pre_insn_back_chain_saved_p = data->back_chain_saved_p; + + /* LHI r1, i2 --- load halfword immediate. */ + /* LGHI r1, i2 --- load halfword immediate (64-bit version). */ + /* LGFI r1, i2 --- load fullword immediate. */ + if (is_ri (insn32, op1_lhi, op2_lhi, &r1, &i2) + || is_ri (insn64, op1_lghi, op2_lghi, &r1, &i2) + || is_ril (insn, op1_lgfi, op2_lgfi, &r1, &i2)) + data->gpr[r1] = pv_constant (i2); + + /* LR r1, r2 --- load from register. */ + /* LGR r1, r2 --- load from register (64-bit version). */ + else if (is_rr (insn32, op_lr, &r1, &r2) + || is_rre (insn64, op_lgr, &r1, &r2)) + data->gpr[r1] = data->gpr[r2]; + + /* L r1, d2(x2, b2) --- load. */ + /* LY r1, d2(x2, b2) --- load (long-displacement version). */ + /* LG r1, d2(x2, b2) --- load (64-bit version). */ + else if (is_rx (insn32, op_l, &r1, &d2, &x2, &b2) + || is_rxy (insn32, op1_ly, op2_ly, &r1, &d2, &x2, &b2) + || is_rxy (insn64, op1_lg, op2_lg, &r1, &d2, &x2, &b2)) + data->gpr[r1] = s390_load (data, d2, x2, b2, data->gpr_size); + + /* ST r1, d2(x2, b2) --- store. */ + /* STY r1, d2(x2, b2) --- store (long-displacement version). */ + /* STG r1, d2(x2, b2) --- store (64-bit version). */ + else if (is_rx (insn32, op_st, &r1, &d2, &x2, &b2) + || is_rxy (insn32, op1_sty, op2_sty, &r1, &d2, &x2, &b2) + || is_rxy (insn64, op1_stg, op2_stg, &r1, &d2, &x2, &b2)) + s390_store (data, d2, x2, b2, data->gpr_size, data->gpr[r1]); + + /* STD r1, d2(x2,b2) --- store floating-point register. */ + else if (is_rx (insn, op_std, &r1, &d2, &x2, &b2)) + s390_store (data, d2, x2, b2, data->fpr_size, data->fpr[r1]); + + /* STM r1, r3, d2(b2) --- store multiple. */ + /* STMY r1, r3, d2(b2) --- store multiple (long-displacement + version). */ + /* STMG r1, r3, d2(b2) --- store multiple (64-bit version). */ + else if (is_rs (insn32, op_stm, &r1, &r3, &d2, &b2) + || is_rsy (insn32, op1_stmy, op2_stmy, &r1, &r3, &d2, &b2) + || is_rsy (insn64, op1_stmg, op2_stmg, &r1, &r3, &d2, &b2)) + { + for (; r1 <= r3; r1++, d2 += data->gpr_size) + s390_store (data, d2, 0, b2, data->gpr_size, data->gpr[r1]); + } + + /* AHI r1, i2 --- add halfword immediate. */ + /* AGHI r1, i2 --- add halfword immediate (64-bit version). */ + /* AFI r1, i2 --- add fullword immediate. */ + /* AGFI r1, i2 --- add fullword immediate (64-bit version). */ + else if (is_ri (insn32, op1_ahi, op2_ahi, &r1, &i2) + || is_ri (insn64, op1_aghi, op2_aghi, &r1, &i2) + || is_ril (insn32, op1_afi, op2_afi, &r1, &i2) + || is_ril (insn64, op1_agfi, op2_agfi, &r1, &i2)) + data->gpr[r1] = pv_add_constant (data->gpr[r1], i2); + + /* ALFI r1, i2 --- add logical immediate. */ + /* ALGFI r1, i2 --- add logical immediate (64-bit version). */ + else if (is_ril (insn32, op1_alfi, op2_alfi, &r1, &i2) + || is_ril (insn64, op1_algfi, op2_algfi, &r1, &i2)) + data->gpr[r1] = pv_add_constant (data->gpr[r1], + (CORE_ADDR)i2 & 0xffffffff); + + /* AR r1, r2 -- add register. */ + /* AGR r1, r2 -- add register (64-bit version). */ + else if (is_rr (insn32, op_ar, &r1, &r2) + || is_rre (insn64, op_agr, &r1, &r2)) + data->gpr[r1] = pv_add (data->gpr[r1], data->gpr[r2]); + + /* A r1, d2(x2, b2) -- add. */ + /* AY r1, d2(x2, b2) -- add (long-displacement version). */ + /* AG r1, d2(x2, b2) -- add (64-bit version). */ + else if (is_rx (insn32, op_a, &r1, &d2, &x2, &b2) + || is_rxy (insn32, op1_ay, op2_ay, &r1, &d2, &x2, &b2) + || is_rxy (insn64, op1_ag, op2_ag, &r1, &d2, &x2, &b2)) + data->gpr[r1] = pv_add (data->gpr[r1], + s390_load (data, d2, x2, b2, data->gpr_size)); + + /* SLFI r1, i2 --- subtract logical immediate. */ + /* SLGFI r1, i2 --- subtract logical immediate (64-bit version). */ + else if (is_ril (insn32, op1_slfi, op2_slfi, &r1, &i2) + || is_ril (insn64, op1_slgfi, op2_slgfi, &r1, &i2)) + data->gpr[r1] = pv_add_constant (data->gpr[r1], + -((CORE_ADDR)i2 & 0xffffffff)); + + /* SR r1, r2 -- subtract register. */ + /* SGR r1, r2 -- subtract register (64-bit version). */ + else if (is_rr (insn32, op_sr, &r1, &r2) + || is_rre (insn64, op_sgr, &r1, &r2)) + data->gpr[r1] = pv_subtract (data->gpr[r1], data->gpr[r2]); + + /* S r1, d2(x2, b2) -- subtract. */ + /* SY r1, d2(x2, b2) -- subtract (long-displacement version). */ + /* SG r1, d2(x2, b2) -- subtract (64-bit version). */ + else if (is_rx (insn32, op_s, &r1, &d2, &x2, &b2) + || is_rxy (insn32, op1_sy, op2_sy, &r1, &d2, &x2, &b2) + || is_rxy (insn64, op1_sg, op2_sg, &r1, &d2, &x2, &b2)) + data->gpr[r1] = pv_subtract (data->gpr[r1], + s390_load (data, d2, x2, b2, data->gpr_size)); + + /* LA r1, d2(x2, b2) --- load address. */ + /* LAY r1, d2(x2, b2) --- load address (long-displacement version). */ + else if (is_rx (insn, op_la, &r1, &d2, &x2, &b2) + || is_rxy (insn, op1_lay, op2_lay, &r1, &d2, &x2, &b2)) + data->gpr[r1] = s390_addr (data, d2, x2, b2); + + /* LARL r1, i2 --- load address relative long. */ + else if (is_ril (insn, op1_larl, op2_larl, &r1, &i2)) + data->gpr[r1] = pv_constant (pc + i2 * 2); + + /* BASR r1, 0 --- branch and save. + Since r2 is zero, this saves the PC in r1, but doesn't branch. */ + else if (is_rr (insn, op_basr, &r1, &r2) + && r2 == 0) + data->gpr[r1] = pv_constant (next_pc); + + /* BRAS r1, i2 --- branch relative and save. */ + else if (is_ri (insn, op1_bras, op2_bras, &r1, &i2)) + { + data->gpr[r1] = pv_constant (next_pc); + next_pc = pc + i2 * 2; + + /* We'd better not interpret any backward branches. We'll + never terminate. */ + if (next_pc <= pc) + break; + } + + /* BRC/BRCL -- branch relative on condition. Ignore "branch + never", branch to following instruction, and "conditional + trap" (BRC +2). Otherwise terminate search. */ + else if (is_ri (insn, op1_brc, op2_brc, &r1, &i2)) + { + if (r1 != 0 && i2 != 1 && i2 != 2) + break; + } + else if (is_ril (insn, op1_brcl, op2_brcl, &r1, &i2)) + { + if (r1 != 0 && i2 != 3) + break; + } + + /* Terminate search when hitting any other branch instruction. */ + else if (is_rr (insn, op_basr, &r1, &r2) + || is_rx (insn, op_bas, &r1, &d2, &x2, &b2) + || is_rr (insn, op_bcr, &r1, &r2) + || is_rx (insn, op_bc, &r1, &d2, &x2, &b2) + || is_ril (insn, op1_brasl, op2_brasl, &r2, &i2)) + break; + + else + { + /* An instruction we don't know how to simulate. The only + safe thing to do would be to set every value we're tracking + to 'unknown'. Instead, we'll be optimistic: we assume that + we *can* interpret every instruction that the compiler uses + to manipulate any of the data we're interested in here -- + then we can just ignore anything else. */ + } + + /* Record the address after the last instruction that changed + the FP, SP, or backlink. Ignore instructions that changed + them back to their original values --- those are probably + restore instructions. (The back chain is never restored, + just popped.) */ + { + pv_t sp = data->gpr[S390_SP_REGNUM - S390_R0_REGNUM]; + pv_t fp = data->gpr[S390_FRAME_REGNUM - S390_R0_REGNUM]; + + if ((! pv_is_identical (pre_insn_sp, sp) + && ! pv_is_register_k (sp, S390_SP_REGNUM, 0) + && sp.kind != pvk_unknown) + || (! pv_is_identical (pre_insn_fp, fp) + && ! pv_is_register_k (fp, S390_FRAME_REGNUM, 0) + && fp.kind != pvk_unknown) + || pre_insn_back_chain_saved_p != data->back_chain_saved_p) + result = next_pc; + } + } + + /* Record where all the registers were saved. */ + data->stack->scan (s390_check_for_saved, data); + + return result; +} + +/* Advance PC across any function entry prologue instructions to reach + some "real" code. */ + +static CORE_ADDR +s390_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc) +{ + struct s390_prologue_data data; + CORE_ADDR skip_pc, func_addr; + + if (find_pc_partial_function (pc, NULL, &func_addr, NULL)) + { + CORE_ADDR post_prologue_pc + = skip_prologue_using_sal (gdbarch, func_addr); + if (post_prologue_pc != 0) + return std::max (pc, post_prologue_pc); + } + + skip_pc = s390_analyze_prologue (gdbarch, pc, (CORE_ADDR)-1, &data); + return skip_pc ? skip_pc : pc; +} + +/* Register handling. */ + +/* ABI call-saved register information. */ + +static int +s390_register_call_saved (struct gdbarch *gdbarch, int regnum) +{ + struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); + + switch (tdep->abi) + { + case ABI_LINUX_S390: + if ((regnum >= S390_R6_REGNUM && regnum <= S390_R15_REGNUM) + || regnum == S390_F4_REGNUM || regnum == S390_F6_REGNUM + || regnum == S390_A0_REGNUM) + return 1; + + break; + + case ABI_LINUX_ZSERIES: + if ((regnum >= S390_R6_REGNUM && regnum <= S390_R15_REGNUM) + || (regnum >= S390_F8_REGNUM && regnum <= S390_F15_REGNUM) + || (regnum >= S390_A0_REGNUM && regnum <= S390_A1_REGNUM)) + return 1; + + break; + } + + return 0; +} + +/* The "guess_tracepoint_registers" gdbarch method. */ + +static void +s390_guess_tracepoint_registers (struct gdbarch *gdbarch, + struct regcache *regcache, + CORE_ADDR addr) +{ + struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); + int sz = register_size (gdbarch, S390_PSWA_REGNUM); + gdb_byte *reg = (gdb_byte *) alloca (sz); + ULONGEST pswm, pswa; + + /* Set PSWA from the location and a default PSWM (the only part we're + unlikely to get right is the CC). */ + if (tdep->abi == ABI_LINUX_S390) + { + /* 31-bit PSWA needs high bit set (it's very unlikely the target + was in 24-bit mode). */ + pswa = addr | 0x80000000UL; + pswm = 0x070d0000UL; + } + else + { + pswa = addr; + pswm = 0x0705000180000000ULL; + } + + store_unsigned_integer (reg, sz, gdbarch_byte_order (gdbarch), pswa); + regcache_raw_supply (regcache, S390_PSWA_REGNUM, reg); + + store_unsigned_integer (reg, sz, gdbarch_byte_order (gdbarch), pswm); + regcache_raw_supply (regcache, S390_PSWM_REGNUM, reg); +} + +/* Return the name of register REGNO. Return the empty string for + registers that shouldn't be visible. */ + +static const char * +s390_register_name (struct gdbarch *gdbarch, int regnum) +{ + if (regnum >= S390_V0_LOWER_REGNUM + && regnum <= S390_V15_LOWER_REGNUM) + return ""; + return tdesc_register_name (gdbarch, regnum); +} + +/* DWARF Register Mapping. */ + +static const short s390_dwarf_regmap[] = +{ + /* 0-15: General Purpose Registers. */ + S390_R0_REGNUM, S390_R1_REGNUM, S390_R2_REGNUM, S390_R3_REGNUM, + S390_R4_REGNUM, S390_R5_REGNUM, S390_R6_REGNUM, S390_R7_REGNUM, + S390_R8_REGNUM, S390_R9_REGNUM, S390_R10_REGNUM, S390_R11_REGNUM, + S390_R12_REGNUM, S390_R13_REGNUM, S390_R14_REGNUM, S390_R15_REGNUM, + + /* 16-31: Floating Point Registers / Vector Registers 0-15. */ + S390_F0_REGNUM, S390_F2_REGNUM, S390_F4_REGNUM, S390_F6_REGNUM, + S390_F1_REGNUM, S390_F3_REGNUM, S390_F5_REGNUM, S390_F7_REGNUM, + S390_F8_REGNUM, S390_F10_REGNUM, S390_F12_REGNUM, S390_F14_REGNUM, + S390_F9_REGNUM, S390_F11_REGNUM, S390_F13_REGNUM, S390_F15_REGNUM, + + /* 32-47: Control Registers (not mapped). */ + -1, -1, -1, -1, -1, -1, -1, -1, + -1, -1, -1, -1, -1, -1, -1, -1, + + /* 48-63: Access Registers. */ + S390_A0_REGNUM, S390_A1_REGNUM, S390_A2_REGNUM, S390_A3_REGNUM, + S390_A4_REGNUM, S390_A5_REGNUM, S390_A6_REGNUM, S390_A7_REGNUM, + S390_A8_REGNUM, S390_A9_REGNUM, S390_A10_REGNUM, S390_A11_REGNUM, + S390_A12_REGNUM, S390_A13_REGNUM, S390_A14_REGNUM, S390_A15_REGNUM, + + /* 64-65: Program Status Word. */ + S390_PSWM_REGNUM, + S390_PSWA_REGNUM, + + /* 66-67: Reserved. */ + -1, -1, + + /* 68-83: Vector Registers 16-31. */ + S390_V16_REGNUM, S390_V18_REGNUM, S390_V20_REGNUM, S390_V22_REGNUM, + S390_V17_REGNUM, S390_V19_REGNUM, S390_V21_REGNUM, S390_V23_REGNUM, + S390_V24_REGNUM, S390_V26_REGNUM, S390_V28_REGNUM, S390_V30_REGNUM, + S390_V25_REGNUM, S390_V27_REGNUM, S390_V29_REGNUM, S390_V31_REGNUM, + + /* End of "official" DWARF registers. The remainder of the map is + for GDB internal use only. */ + + /* GPR Lower Half Access. */ + S390_R0_REGNUM, S390_R1_REGNUM, S390_R2_REGNUM, S390_R3_REGNUM, + S390_R4_REGNUM, S390_R5_REGNUM, S390_R6_REGNUM, S390_R7_REGNUM, + S390_R8_REGNUM, S390_R9_REGNUM, S390_R10_REGNUM, S390_R11_REGNUM, + S390_R12_REGNUM, S390_R13_REGNUM, S390_R14_REGNUM, S390_R15_REGNUM, +}; + +enum { s390_dwarf_reg_r0l = ARRAY_SIZE (s390_dwarf_regmap) - 16 }; + +/* Convert DWARF register number REG to the appropriate register + number used by GDB. */ + +static int +s390_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg) +{ + struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); + int gdb_reg = -1; + + /* In a 32-on-64 debug scenario, debug info refers to the full + 64-bit GPRs. Note that call frame information still refers to + the 32-bit lower halves, because s390_adjust_frame_regnum uses + special register numbers to access GPRs. */ + if (tdep->gpr_full_regnum != -1 && reg >= 0 && reg < 16) + return tdep->gpr_full_regnum + reg; + + if (reg >= 0 && reg < ARRAY_SIZE (s390_dwarf_regmap)) + gdb_reg = s390_dwarf_regmap[reg]; + + if (tdep->v0_full_regnum == -1) + { + if (gdb_reg >= S390_V16_REGNUM && gdb_reg <= S390_V31_REGNUM) + gdb_reg = -1; + } + else + { + if (gdb_reg >= S390_F0_REGNUM && gdb_reg <= S390_F15_REGNUM) + gdb_reg = gdb_reg - S390_F0_REGNUM + tdep->v0_full_regnum; + } + + return gdb_reg; +} + +/* Pseudo registers. */ + +/* Check whether REGNUM indicates a coupled general purpose register. + These pseudo-registers are composed of two adjacent gprs. */ + +static int +regnum_is_gpr_full (struct gdbarch_tdep *tdep, int regnum) +{ + return (tdep->gpr_full_regnum != -1 + && regnum >= tdep->gpr_full_regnum + && regnum <= tdep->gpr_full_regnum + 15); +} + +/* Check whether REGNUM indicates a full vector register (v0-v15). + These pseudo-registers are composed of f0-f15 and v0l-v15l. */ + +static int +regnum_is_vxr_full (struct gdbarch_tdep *tdep, int regnum) +{ + return (tdep->v0_full_regnum != -1 + && regnum >= tdep->v0_full_regnum + && regnum <= tdep->v0_full_regnum + 15); +} + +/* 'float' values are stored in the upper half of floating-point + registers, even though we are otherwise a big-endian platform. The + same applies to a 'float' value within a vector. */ + +static struct value * +s390_value_from_register (struct gdbarch *gdbarch, struct type *type, + int regnum, struct frame_id frame_id) +{ + struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); + struct value *value = default_value_from_register (gdbarch, type, + regnum, frame_id); + check_typedef (type); + + if ((regnum >= S390_F0_REGNUM && regnum <= S390_F15_REGNUM + && TYPE_LENGTH (type) < 8) + || regnum_is_vxr_full (tdep, regnum) + || (regnum >= S390_V16_REGNUM && regnum <= S390_V31_REGNUM)) + set_value_offset (value, 0); + + return value; +} + +/* Implement pseudo_register_name tdesc method. */ + +static const char * +s390_pseudo_register_name (struct gdbarch *gdbarch, int regnum) +{ + struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); + + if (regnum == tdep->pc_regnum) + return "pc"; + + if (regnum == tdep->cc_regnum) + return "cc"; + + if (regnum_is_gpr_full (tdep, regnum)) + { + static const char *full_name[] = { + "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", + "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15" + }; + return full_name[regnum - tdep->gpr_full_regnum]; + } + + if (regnum_is_vxr_full (tdep, regnum)) + { + static const char *full_name[] = { + "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", + "v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15" + }; + return full_name[regnum - tdep->v0_full_regnum]; + } + + internal_error (__FILE__, __LINE__, _("invalid regnum")); +} + +/* Implement pseudo_register_type tdesc method. */ + +static struct type * +s390_pseudo_register_type (struct gdbarch *gdbarch, int regnum) +{ + struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); + + if (regnum == tdep->pc_regnum) + return builtin_type (gdbarch)->builtin_func_ptr; + + if (regnum == tdep->cc_regnum) + return builtin_type (gdbarch)->builtin_int; + + if (regnum_is_gpr_full (tdep, regnum)) + return builtin_type (gdbarch)->builtin_uint64; + + if (regnum_is_vxr_full (tdep, regnum)) + return tdesc_find_type (gdbarch, "vec128"); + + internal_error (__FILE__, __LINE__, _("invalid regnum")); +} + +/* Implement pseudo_register_read gdbarch method. */ + +static enum register_status +s390_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache, + int regnum, gdb_byte *buf) +{ + struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); + enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); + int regsize = register_size (gdbarch, regnum); + ULONGEST val; + + if (regnum == tdep->pc_regnum) + { + enum register_status status; + + status = regcache_raw_read_unsigned (regcache, S390_PSWA_REGNUM, &val); + if (status == REG_VALID) + { + if (register_size (gdbarch, S390_PSWA_REGNUM) == 4) + val &= 0x7fffffff; + store_unsigned_integer (buf, regsize, byte_order, val); + } + return status; + } + + if (regnum == tdep->cc_regnum) + { + enum register_status status; + + status = regcache_raw_read_unsigned (regcache, S390_PSWM_REGNUM, &val); + if (status == REG_VALID) + { + if (register_size (gdbarch, S390_PSWA_REGNUM) == 4) + val = (val >> 12) & 3; + else + val = (val >> 44) & 3; + store_unsigned_integer (buf, regsize, byte_order, val); + } + return status; + } + + if (regnum_is_gpr_full (tdep, regnum)) + { + enum register_status status; + ULONGEST val_upper; + + regnum -= tdep->gpr_full_regnum; + + status = regcache_raw_read_unsigned (regcache, S390_R0_REGNUM + regnum, &val); + if (status == REG_VALID) + status = regcache_raw_read_unsigned (regcache, S390_R0_UPPER_REGNUM + regnum, + &val_upper); + if (status == REG_VALID) + { + val |= val_upper << 32; + store_unsigned_integer (buf, regsize, byte_order, val); + } + return status; + } + + if (regnum_is_vxr_full (tdep, regnum)) + { + enum register_status status; + + regnum -= tdep->v0_full_regnum; + + status = regcache_raw_read (regcache, S390_F0_REGNUM + regnum, buf); + if (status == REG_VALID) + status = regcache_raw_read (regcache, + S390_V0_LOWER_REGNUM + regnum, buf + 8); + return status; + } + + internal_error (__FILE__, __LINE__, _("invalid regnum")); +} + +/* Implement pseudo_register_write gdbarch method. */ + +static void +s390_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache, + int regnum, const gdb_byte *buf) +{ + struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); + enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); + int regsize = register_size (gdbarch, regnum); + ULONGEST val, psw; + + if (regnum == tdep->pc_regnum) + { + val = extract_unsigned_integer (buf, regsize, byte_order); + if (register_size (gdbarch, S390_PSWA_REGNUM) == 4) + { + regcache_raw_read_unsigned (regcache, S390_PSWA_REGNUM, &psw); + val = (psw & 0x80000000) | (val & 0x7fffffff); + } + regcache_raw_write_unsigned (regcache, S390_PSWA_REGNUM, val); + return; + } + + if (regnum == tdep->cc_regnum) + { + val = extract_unsigned_integer (buf, regsize, byte_order); + regcache_raw_read_unsigned (regcache, S390_PSWM_REGNUM, &psw); + if (register_size (gdbarch, S390_PSWA_REGNUM) == 4) + val = (psw & ~((ULONGEST)3 << 12)) | ((val & 3) << 12); + else + val = (psw & ~((ULONGEST)3 << 44)) | ((val & 3) << 44); + regcache_raw_write_unsigned (regcache, S390_PSWM_REGNUM, val); + return; + } + + if (regnum_is_gpr_full (tdep, regnum)) + { + regnum -= tdep->gpr_full_regnum; + val = extract_unsigned_integer (buf, regsize, byte_order); + regcache_raw_write_unsigned (regcache, S390_R0_REGNUM + regnum, + val & 0xffffffff); + regcache_raw_write_unsigned (regcache, S390_R0_UPPER_REGNUM + regnum, + val >> 32); + return; + } + + if (regnum_is_vxr_full (tdep, regnum)) + { + regnum -= tdep->v0_full_regnum; + regcache_raw_write (regcache, S390_F0_REGNUM + regnum, buf); + regcache_raw_write (regcache, S390_V0_LOWER_REGNUM + regnum, buf + 8); + return; + } + + internal_error (__FILE__, __LINE__, _("invalid regnum")); +} + +/* Register groups. */ + +/* Implement pseudo_register_reggroup_p tdesc method. */ + +static int +s390_pseudo_register_reggroup_p (struct gdbarch *gdbarch, int regnum, + struct reggroup *group) +{ + struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); + + /* We usually save/restore the whole PSW, which includes PC and CC. + However, some older gdbservers may not support saving/restoring + the whole PSW yet, and will return an XML register description + excluding those from the save/restore register groups. In those + cases, we still need to explicitly save/restore PC and CC in order + to push or pop frames. Since this doesn't hurt anything if we + already save/restore the whole PSW (it's just redundant), we add + PC and CC at this point unconditionally. */ + if (group == save_reggroup || group == restore_reggroup) + return regnum == tdep->pc_regnum || regnum == tdep->cc_regnum; + + if (group == vector_reggroup) + return regnum_is_vxr_full (tdep, regnum); + + if (group == general_reggroup && regnum_is_vxr_full (tdep, regnum)) + return 0; + + return default_register_reggroup_p (gdbarch, regnum, group); +} + +/* The "ax_pseudo_register_collect" gdbarch method. */ + +static int +s390_ax_pseudo_register_collect (struct gdbarch *gdbarch, + struct agent_expr *ax, int regnum) +{ + struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); + if (regnum == tdep->pc_regnum) + { + ax_reg_mask (ax, S390_PSWA_REGNUM); + } + else if (regnum == tdep->cc_regnum) + { + ax_reg_mask (ax, S390_PSWM_REGNUM); + } + else if (regnum_is_gpr_full (tdep, regnum)) + { + regnum -= tdep->gpr_full_regnum; + ax_reg_mask (ax, S390_R0_REGNUM + regnum); + ax_reg_mask (ax, S390_R0_UPPER_REGNUM + regnum); + } + else if (regnum_is_vxr_full (tdep, regnum)) + { + regnum -= tdep->v0_full_regnum; + ax_reg_mask (ax, S390_F0_REGNUM + regnum); + ax_reg_mask (ax, S390_V0_LOWER_REGNUM + regnum); + } + else + { + internal_error (__FILE__, __LINE__, _("invalid regnum")); + } + return 0; +} + +/* The "ax_pseudo_register_push_stack" gdbarch method. */ + +static int +s390_ax_pseudo_register_push_stack (struct gdbarch *gdbarch, + struct agent_expr *ax, int regnum) +{ + struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); + if (regnum == tdep->pc_regnum) + { + ax_reg (ax, S390_PSWA_REGNUM); + if (register_size (gdbarch, S390_PSWA_REGNUM) == 4) + { + ax_zero_ext (ax, 31); + } + } + else if (regnum == tdep->cc_regnum) + { + ax_reg (ax, S390_PSWM_REGNUM); + if (register_size (gdbarch, S390_PSWA_REGNUM) == 4) + ax_const_l (ax, 12); + else + ax_const_l (ax, 44); + ax_simple (ax, aop_rsh_unsigned); + ax_zero_ext (ax, 2); + } + else if (regnum_is_gpr_full (tdep, regnum)) + { + regnum -= tdep->gpr_full_regnum; + ax_reg (ax, S390_R0_REGNUM + regnum); + ax_reg (ax, S390_R0_UPPER_REGNUM + regnum); + ax_const_l (ax, 32); + ax_simple (ax, aop_lsh); + ax_simple (ax, aop_bit_or); + } + else if (regnum_is_vxr_full (tdep, regnum)) + { + /* Too large to stuff on the stack. */ + return 1; + } + else + { + internal_error (__FILE__, __LINE__, _("invalid regnum")); + } + return 0; +} + +/* The "gen_return_address" gdbarch method. Since this is supposed to be + just a best-effort method, and we don't really have the means to run + the full unwinder here, just collect the link register. */ + +static void +s390_gen_return_address (struct gdbarch *gdbarch, + struct agent_expr *ax, struct axs_value *value, + CORE_ADDR scope) +{ + value->type = register_type (gdbarch, S390_R14_REGNUM); + value->kind = axs_lvalue_register; + value->u.reg = S390_R14_REGNUM; +} + +/* Address handling. */ + +/* Implement addr_bits_remove gdbarch method. + Only used for ABI_LINUX_S390. */ + +static CORE_ADDR +s390_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR addr) +{ + return addr & 0x7fffffff; +} + +/* Implement addr_class_type_flags gdbarch method. + Only used for ABI_LINUX_ZSERIES. */ + +static int +s390_address_class_type_flags (int byte_size, int dwarf2_addr_class) +{ + if (byte_size == 4) + return TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1; + else + return 0; +} + +/* Implement addr_class_type_flags_to_name gdbarch method. + Only used for ABI_LINUX_ZSERIES. */ + +static const char * +s390_address_class_type_flags_to_name (struct gdbarch *gdbarch, int type_flags) +{ + if (type_flags & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1) + return "mode32"; + else + return NULL; +} + +/* Implement addr_class_name_to_type_flags gdbarch method. + Only used for ABI_LINUX_ZSERIES. */ + +static int +s390_address_class_name_to_type_flags (struct gdbarch *gdbarch, + const char *name, + int *type_flags_ptr) +{ + if (strcmp (name, "mode32") == 0) + { + *type_flags_ptr = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1; + return 1; + } + else + return 0; +} + +/* Inferior function calls. */ + +/* Dummy function calls. */ + +/* Unwrap any single-field structs in TYPE and return the effective + "inner" type. E.g., yield "float" for all these cases: + + float x; + struct { float x }; + struct { struct { float x; } x; }; + struct { struct { struct { float x; } x; } x; }; + + However, if an inner type is smaller than MIN_SIZE, abort the + unwrapping. */ + +static struct type * +s390_effective_inner_type (struct type *type, unsigned int min_size) +{ + while (TYPE_CODE (type) == TYPE_CODE_STRUCT + && TYPE_NFIELDS (type) == 1) + { + struct type *inner = check_typedef (TYPE_FIELD_TYPE (type, 0)); + + if (TYPE_LENGTH (inner) < min_size) + break; + type = inner; + } + + return type; +} + +/* Return non-zero if TYPE should be passed like "float" or + "double". */ + +static int +s390_function_arg_float (struct type *type) +{ + /* Note that long double as well as complex types are intentionally + excluded. */ + if (TYPE_LENGTH (type) > 8) + return 0; + + /* A struct containing just a float or double is passed like a float + or double. */ + type = s390_effective_inner_type (type, 0); + + return (TYPE_CODE (type) == TYPE_CODE_FLT + || TYPE_CODE (type) == TYPE_CODE_DECFLOAT); +} + +/* Return non-zero if TYPE should be passed like a vector. */ + +static int +s390_function_arg_vector (struct type *type) +{ + if (TYPE_LENGTH (type) > 16) + return 0; + + /* Structs containing just a vector are passed like a vector. */ + type = s390_effective_inner_type (type, TYPE_LENGTH (type)); + + return TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type); +} + +/* Determine whether N is a power of two. */ + +static int +is_power_of_two (unsigned int n) +{ + return n && ((n & (n - 1)) == 0); +} + +/* For an argument whose type is TYPE and which is not passed like a + float or vector, return non-zero if it should be passed like "int" + or "long long". */ + +static int +s390_function_arg_integer (struct type *type) +{ + enum type_code code = TYPE_CODE (type); + + if (TYPE_LENGTH (type) > 8) + return 0; + + if (code == TYPE_CODE_INT + || code == TYPE_CODE_ENUM + || code == TYPE_CODE_RANGE + || code == TYPE_CODE_CHAR + || code == TYPE_CODE_BOOL + || code == TYPE_CODE_PTR + || TYPE_IS_REFERENCE (type)) + return 1; + + return ((code == TYPE_CODE_UNION || code == TYPE_CODE_STRUCT) + && is_power_of_two (TYPE_LENGTH (type))); +} + +/* Argument passing state: Internal data structure passed to helper + routines of s390_push_dummy_call. */ + +struct s390_arg_state + { + /* Register cache, or NULL, if we are in "preparation mode". */ + struct regcache *regcache; + /* Next available general/floating-point/vector register for + argument passing. */ + int gr, fr, vr; + /* Current pointer to copy area (grows downwards). */ + CORE_ADDR copy; + /* Current pointer to parameter area (grows upwards). */ + CORE_ADDR argp; + }; + +/* Prepare one argument ARG for a dummy call and update the argument + passing state AS accordingly. If the regcache field in AS is set, + operate in "write mode" and write ARG into the inferior. Otherwise + run "preparation mode" and skip all updates to the inferior. */ + +static void +s390_handle_arg (struct s390_arg_state *as, struct value *arg, + struct gdbarch_tdep *tdep, int word_size, + enum bfd_endian byte_order, int is_unnamed) +{ + struct type *type = check_typedef (value_type (arg)); + unsigned int length = TYPE_LENGTH (type); + int write_mode = as->regcache != NULL; + + if (s390_function_arg_float (type)) + { + /* The GNU/Linux for S/390 ABI uses FPRs 0 and 2 to pass + arguments. The GNU/Linux for zSeries ABI uses 0, 2, 4, and + 6. */ + if (as->fr <= (tdep->abi == ABI_LINUX_S390 ? 2 : 6)) + { + /* When we store a single-precision value in an FP register, + it occupies the leftmost bits. */ + if (write_mode) + regcache_cooked_write_part (as->regcache, + S390_F0_REGNUM + as->fr, + 0, length, + value_contents (arg)); + as->fr += 2; + } + else + { + /* When we store a single-precision value in a stack slot, + it occupies the rightmost bits. */ + as->argp = align_up (as->argp + length, word_size); + if (write_mode) + write_memory (as->argp - length, value_contents (arg), + length); + } + } + else if (tdep->vector_abi == S390_VECTOR_ABI_128 + && s390_function_arg_vector (type)) + { + static const char use_vr[] = {24, 26, 28, 30, 25, 27, 29, 31}; + + if (!is_unnamed && as->vr < ARRAY_SIZE (use_vr)) + { + int regnum = S390_V24_REGNUM + use_vr[as->vr] - 24; + + if (write_mode) + regcache_cooked_write_part (as->regcache, regnum, + 0, length, + value_contents (arg)); + as->vr++; + } + else + { + if (write_mode) + write_memory (as->argp, value_contents (arg), length); + as->argp = align_up (as->argp + length, word_size); + } + } + else if (s390_function_arg_integer (type) && length <= word_size) + { + /* Initialize it just to avoid a GCC false warning. */ + ULONGEST val = 0; + + if (write_mode) + { + /* Place value in least significant bits of the register or + memory word and sign- or zero-extend to full word size. + This also applies to a struct or union. */ + val = TYPE_UNSIGNED (type) + ? extract_unsigned_integer (value_contents (arg), + length, byte_order) + : extract_signed_integer (value_contents (arg), + length, byte_order); + } + + if (as->gr <= 6) + { + if (write_mode) + regcache_cooked_write_unsigned (as->regcache, + S390_R0_REGNUM + as->gr, + val); + as->gr++; + } + else + { + if (write_mode) + write_memory_unsigned_integer (as->argp, word_size, + byte_order, val); + as->argp += word_size; + } + } + else if (s390_function_arg_integer (type) && length == 8) + { + if (as->gr <= 5) + { + if (write_mode) + { + regcache_cooked_write (as->regcache, + S390_R0_REGNUM + as->gr, + value_contents (arg)); + regcache_cooked_write (as->regcache, + S390_R0_REGNUM + as->gr + 1, + value_contents (arg) + word_size); + } + as->gr += 2; + } + else + { + /* If we skipped r6 because we couldn't fit a DOUBLE_ARG + in it, then don't go back and use it again later. */ + as->gr = 7; + + if (write_mode) + write_memory (as->argp, value_contents (arg), length); + as->argp += length; + } + } + else + { + /* This argument type is never passed in registers. Place the + value in the copy area and pass a pointer to it. Use 8-byte + alignment as a conservative assumption. */ + as->copy = align_down (as->copy - length, 8); + if (write_mode) + write_memory (as->copy, value_contents (arg), length); + + if (as->gr <= 6) + { + if (write_mode) + regcache_cooked_write_unsigned (as->regcache, + S390_R0_REGNUM + as->gr, + as->copy); + as->gr++; + } + else + { + if (write_mode) + write_memory_unsigned_integer (as->argp, word_size, + byte_order, as->copy); + as->argp += word_size; + } + } +} + +/* Put the actual parameter values pointed to by ARGS[0..NARGS-1] in + place to be passed to a function, as specified by the "GNU/Linux + for S/390 ELF Application Binary Interface Supplement". + + SP is the current stack pointer. We must put arguments, links, + padding, etc. whereever they belong, and return the new stack + pointer value. + + If STRUCT_RETURN is non-zero, then the function we're calling is + going to return a structure by value; STRUCT_ADDR is the address of + a block we've allocated for it on the stack. + + Our caller has taken care of any type promotions needed to satisfy + prototypes or the old K&R argument-passing rules. */ + +static CORE_ADDR +s390_push_dummy_call (struct gdbarch *gdbarch, struct value *function, + struct regcache *regcache, CORE_ADDR bp_addr, + int nargs, struct value **args, CORE_ADDR sp, + int struct_return, CORE_ADDR struct_addr) +{ + struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); + int word_size = gdbarch_ptr_bit (gdbarch) / 8; + enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); + int i; + struct s390_arg_state arg_state, arg_prep; + CORE_ADDR param_area_start, new_sp; + struct type *ftype = check_typedef (value_type (function)); + + if (TYPE_CODE (ftype) == TYPE_CODE_PTR) + ftype = check_typedef (TYPE_TARGET_TYPE (ftype)); + + arg_prep.copy = sp; + arg_prep.gr = struct_return ? 3 : 2; + arg_prep.fr = 0; + arg_prep.vr = 0; + arg_prep.argp = 0; + arg_prep.regcache = NULL; + + /* Initialize arg_state for "preparation mode". */ + arg_state = arg_prep; + + /* Update arg_state.copy with the start of the reference-to-copy area + and arg_state.argp with the size of the parameter area. */ + for (i = 0; i < nargs; i++) + s390_handle_arg (&arg_state, args[i], tdep, word_size, byte_order, + TYPE_VARARGS (ftype) && i >= TYPE_NFIELDS (ftype)); + + param_area_start = align_down (arg_state.copy - arg_state.argp, 8); + + /* Allocate the standard frame areas: the register save area, the + word reserved for the compiler, and the back chain pointer. */ + new_sp = param_area_start - (16 * word_size + 32); + + /* Now we have the final stack pointer. Make sure we didn't + underflow; on 31-bit, this would result in addresses with the + high bit set, which causes confusion elsewhere. Note that if we + error out here, stack and registers remain untouched. */ + if (gdbarch_addr_bits_remove (gdbarch, new_sp) != new_sp) + error (_("Stack overflow")); + + /* Pass the structure return address in general register 2. */ + if (struct_return) + regcache_cooked_write_unsigned (regcache, S390_R2_REGNUM, struct_addr); + + /* Initialize arg_state for "write mode". */ + arg_state = arg_prep; + arg_state.argp = param_area_start; + arg_state.regcache = regcache; + + /* Write all parameters. */ + for (i = 0; i < nargs; i++) + s390_handle_arg (&arg_state, args[i], tdep, word_size, byte_order, + TYPE_VARARGS (ftype) && i >= TYPE_NFIELDS (ftype)); + + /* Store return PSWA. In 31-bit mode, keep addressing mode bit. */ + if (word_size == 4) + { + ULONGEST pswa; + regcache_cooked_read_unsigned (regcache, S390_PSWA_REGNUM, &pswa); + bp_addr = (bp_addr & 0x7fffffff) | (pswa & 0x80000000); + } + regcache_cooked_write_unsigned (regcache, S390_RETADDR_REGNUM, bp_addr); + + /* Store updated stack pointer. */ + regcache_cooked_write_unsigned (regcache, S390_SP_REGNUM, new_sp); + + /* We need to return the 'stack part' of the frame ID, + which is actually the top of the register save area. */ + return param_area_start; +} + +/* Assuming THIS_FRAME is a dummy, return the frame ID of that + dummy frame. The frame ID's base needs to match the TOS value + returned by push_dummy_call, and the PC match the dummy frame's + breakpoint. */ + +static struct frame_id +s390_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame) +{ + int word_size = gdbarch_ptr_bit (gdbarch) / 8; + CORE_ADDR sp = get_frame_register_unsigned (this_frame, S390_SP_REGNUM); + sp = gdbarch_addr_bits_remove (gdbarch, sp); + + return frame_id_build (sp + 16*word_size + 32, + get_frame_pc (this_frame)); +} + +/* Implement frame_align gdbarch method. */ + +static CORE_ADDR +s390_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr) +{ + /* Both the 32- and 64-bit ABI's say that the stack pointer should + always be aligned on an eight-byte boundary. */ + return (addr & -8); +} + +/* Helper for s390_return_value: Set or retrieve a function return + value if it resides in a register. */ + +static void +s390_register_return_value (struct gdbarch *gdbarch, struct type *type, + struct regcache *regcache, + gdb_byte *out, const gdb_byte *in) +{ + enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); + int word_size = gdbarch_ptr_bit (gdbarch) / 8; + int length = TYPE_LENGTH (type); + int code = TYPE_CODE (type); + + if (code == TYPE_CODE_FLT || code == TYPE_CODE_DECFLOAT) + { + /* Float-like value: left-aligned in f0. */ + if (in != NULL) + regcache_cooked_write_part (regcache, S390_F0_REGNUM, + 0, length, in); + else + regcache_cooked_read_part (regcache, S390_F0_REGNUM, + 0, length, out); + } + else if (code == TYPE_CODE_ARRAY) + { + /* Vector: left-aligned in v24. */ + if (in != NULL) + regcache_cooked_write_part (regcache, S390_V24_REGNUM, + 0, length, in); + else + regcache_cooked_read_part (regcache, S390_V24_REGNUM, + 0, length, out); + } + else if (length <= word_size) + { + /* Integer: zero- or sign-extended in r2. */ + if (out != NULL) + regcache_cooked_read_part (regcache, S390_R2_REGNUM, + word_size - length, length, out); + else if (TYPE_UNSIGNED (type)) + regcache_cooked_write_unsigned + (regcache, S390_R2_REGNUM, + extract_unsigned_integer (in, length, byte_order)); + else + regcache_cooked_write_signed + (regcache, S390_R2_REGNUM, + extract_signed_integer (in, length, byte_order)); + } + else if (length == 2 * word_size) + { + /* Double word: in r2 and r3. */ + if (in != NULL) + { + regcache_cooked_write (regcache, S390_R2_REGNUM, in); + regcache_cooked_write (regcache, S390_R3_REGNUM, + in + word_size); + } + else + { + regcache_cooked_read (regcache, S390_R2_REGNUM, out); + regcache_cooked_read (regcache, S390_R3_REGNUM, + out + word_size); + } + } + else + internal_error (__FILE__, __LINE__, _("invalid return type")); +} + +/* Implement the 'return_value' gdbarch method. */ + +static enum return_value_convention +s390_return_value (struct gdbarch *gdbarch, struct value *function, + struct type *type, struct regcache *regcache, + gdb_byte *out, const gdb_byte *in) +{ + enum return_value_convention rvc; + + type = check_typedef (type); + + switch (TYPE_CODE (type)) + { + case TYPE_CODE_STRUCT: + case TYPE_CODE_UNION: + case TYPE_CODE_COMPLEX: + rvc = RETURN_VALUE_STRUCT_CONVENTION; + break; + case TYPE_CODE_ARRAY: + rvc = (gdbarch_tdep (gdbarch)->vector_abi == S390_VECTOR_ABI_128 + && TYPE_LENGTH (type) <= 16 && TYPE_VECTOR (type)) + ? RETURN_VALUE_REGISTER_CONVENTION + : RETURN_VALUE_STRUCT_CONVENTION; + break; + default: + rvc = TYPE_LENGTH (type) <= 8 + ? RETURN_VALUE_REGISTER_CONVENTION + : RETURN_VALUE_STRUCT_CONVENTION; + } + + if (in != NULL || out != NULL) + { + if (rvc == RETURN_VALUE_REGISTER_CONVENTION) + s390_register_return_value (gdbarch, type, regcache, out, in); + else if (in != NULL) + error (_("Cannot set function return value.")); + else + error (_("Function return value unknown.")); + } + + return rvc; +} + +/* Frame unwinding. */ + +/* Implmement the stack_frame_destroyed_p gdbarch method. */ + +static int +s390_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc) +{ + int word_size = gdbarch_ptr_bit (gdbarch) / 8; + + /* In frameless functions, there's no frame to destroy and thus + we don't care about the epilogue. + + In functions with frame, the epilogue sequence is a pair of + a LM-type instruction that restores (amongst others) the + return register %r14 and the stack pointer %r15, followed + by a branch 'br %r14' --or equivalent-- that effects the + actual return. + + In that situation, this function needs to return 'true' in + exactly one case: when pc points to that branch instruction. + + Thus we try to disassemble the one instructions immediately + preceding pc and check whether it is an LM-type instruction + modifying the stack pointer. + + Note that disassembling backwards is not reliable, so there + is a slight chance of false positives here ... */ + + bfd_byte insn[6]; + unsigned int r1, r3, b2; + int d2; + + if (word_size == 4 + && !target_read_memory (pc - 4, insn, 4) + && is_rs (insn, op_lm, &r1, &r3, &d2, &b2) + && r3 == S390_SP_REGNUM - S390_R0_REGNUM) + return 1; + + if (word_size == 4 + && !target_read_memory (pc - 6, insn, 6) + && is_rsy (insn, op1_lmy, op2_lmy, &r1, &r3, &d2, &b2) + && r3 == S390_SP_REGNUM - S390_R0_REGNUM) + return 1; + + if (word_size == 8 + && !target_read_memory (pc - 6, insn, 6) + && is_rsy (insn, op1_lmg, op2_lmg, &r1, &r3, &d2, &b2) + && r3 == S390_SP_REGNUM - S390_R0_REGNUM) + return 1; + + return 0; +} + +/* Implement unwind_pc gdbarch method. */ + +static CORE_ADDR +s390_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame) +{ + struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); + ULONGEST pc; + pc = frame_unwind_register_unsigned (next_frame, tdep->pc_regnum); + return gdbarch_addr_bits_remove (gdbarch, pc); +} + +/* Implement unwind_sp gdbarch method. */ + +static CORE_ADDR +s390_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame) +{ + ULONGEST sp; + sp = frame_unwind_register_unsigned (next_frame, S390_SP_REGNUM); + return gdbarch_addr_bits_remove (gdbarch, sp); +} + +/* Helper routine to unwind pseudo registers. */ + +static struct value * +s390_unwind_pseudo_register (struct frame_info *this_frame, int regnum) +{ + struct gdbarch *gdbarch = get_frame_arch (this_frame); + struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); + struct type *type = register_type (gdbarch, regnum); + + /* Unwind PC via PSW address. */ + if (regnum == tdep->pc_regnum) + { + struct value *val; + + val = frame_unwind_register_value (this_frame, S390_PSWA_REGNUM); + if (!value_optimized_out (val)) + { + LONGEST pswa = value_as_long (val); + + if (TYPE_LENGTH (type) == 4) + return value_from_pointer (type, pswa & 0x7fffffff); + else + return value_from_pointer (type, pswa); + } + } + + /* Unwind CC via PSW mask. */ + if (regnum == tdep->cc_regnum) + { + struct value *val; + + val = frame_unwind_register_value (this_frame, S390_PSWM_REGNUM); + if (!value_optimized_out (val)) + { + LONGEST pswm = value_as_long (val); + + if (TYPE_LENGTH (type) == 4) + return value_from_longest (type, (pswm >> 12) & 3); + else + return value_from_longest (type, (pswm >> 44) & 3); + } + } + + /* Unwind full GPRs to show at least the lower halves (as the + upper halves are undefined). */ + if (regnum_is_gpr_full (tdep, regnum)) + { + int reg = regnum - tdep->gpr_full_regnum; + struct value *val; + + val = frame_unwind_register_value (this_frame, S390_R0_REGNUM + reg); + if (!value_optimized_out (val)) + return value_cast (type, val); + } + + return allocate_optimized_out_value (type); +} + +/* Translate a .eh_frame register to DWARF register, or adjust a + .debug_frame register. */ + +static int +s390_adjust_frame_regnum (struct gdbarch *gdbarch, int num, int eh_frame_p) +{ + /* See s390_dwarf_reg_to_regnum for comments. */ + return (num >= 0 && num < 16) ? num + s390_dwarf_reg_r0l : num; +} + +/* DWARF-2 frame unwinding. */ + +/* Function to unwind a pseudo-register in dwarf2_frame unwinder. Used by + s390_dwarf2_frame_init_reg. */ + +static struct value * +s390_dwarf2_prev_register (struct frame_info *this_frame, void **this_cache, + int regnum) +{ + return s390_unwind_pseudo_register (this_frame, regnum); +} + +/* Implement init_reg dwarf2_frame method. */ + +static void +s390_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum, + struct dwarf2_frame_state_reg *reg, + struct frame_info *this_frame) +{ + /* The condition code (and thus PSW mask) is call-clobbered. */ + if (regnum == S390_PSWM_REGNUM) + reg->how = DWARF2_FRAME_REG_UNDEFINED; + + /* The PSW address unwinds to the return address. */ + else if (regnum == S390_PSWA_REGNUM) + reg->how = DWARF2_FRAME_REG_RA; + + /* Fixed registers are call-saved or call-clobbered + depending on the ABI in use. */ + else if (regnum < S390_NUM_REGS) + { + if (s390_register_call_saved (gdbarch, regnum)) + reg->how = DWARF2_FRAME_REG_SAME_VALUE; + else + reg->how = DWARF2_FRAME_REG_UNDEFINED; + } + + /* We install a special function to unwind pseudos. */ + else + { + reg->how = DWARF2_FRAME_REG_FN; + reg->loc.fn = s390_dwarf2_prev_register; + } +} + +/* Frame unwinding. */ + +/* Wrapper for trad_frame_get_prev_register to allow for s390 pseudo + register translation. */ + +struct value * +s390_trad_frame_prev_register (struct frame_info *this_frame, + struct trad_frame_saved_reg saved_regs[], + int regnum) +{ + if (regnum < S390_NUM_REGS) + return trad_frame_get_prev_register (this_frame, saved_regs, regnum); + else + return s390_unwind_pseudo_register (this_frame, regnum); +} + +/* Normal stack frames. */ + +struct s390_unwind_cache { + + CORE_ADDR func; + CORE_ADDR frame_base; + CORE_ADDR local_base; + + struct trad_frame_saved_reg *saved_regs; +}; + +/* Unwind THIS_FRAME and write the information into unwind cache INFO using + prologue analysis. Helper for s390_frame_unwind_cache. */ + +static int +s390_prologue_frame_unwind_cache (struct frame_info *this_frame, + struct s390_unwind_cache *info) +{ + struct gdbarch *gdbarch = get_frame_arch (this_frame); + int word_size = gdbarch_ptr_bit (gdbarch) / 8; + struct s390_prologue_data data; + pv_t *fp = &data.gpr[S390_FRAME_REGNUM - S390_R0_REGNUM]; + pv_t *sp = &data.gpr[S390_SP_REGNUM - S390_R0_REGNUM]; + int i; + CORE_ADDR cfa; + CORE_ADDR func; + CORE_ADDR result; + ULONGEST reg; + CORE_ADDR prev_sp; + int frame_pointer; + int size; + struct frame_info *next_frame; + + /* Try to find the function start address. If we can't find it, we don't + bother searching for it -- with modern compilers this would be mostly + pointless anyway. Trust that we'll either have valid DWARF-2 CFI data + or else a valid backchain ... */ + if (!get_frame_func_if_available (this_frame, &info->func)) + { + info->func = -1; + return 0; + } + func = info->func; + + /* Try to analyze the prologue. */ + result = s390_analyze_prologue (gdbarch, func, + get_frame_pc (this_frame), &data); + if (!result) + return 0; + + /* If this was successful, we should have found the instruction that + sets the stack pointer register to the previous value of the stack + pointer minus the frame size. */ + if (!pv_is_register (*sp, S390_SP_REGNUM)) + return 0; + + /* A frame size of zero at this point can mean either a real + frameless function, or else a failure to find the prologue. + Perform some sanity checks to verify we really have a + frameless function. */ + if (sp->k == 0) + { + /* If the next frame is a NORMAL_FRAME, this frame *cannot* have frame + size zero. This is only possible if the next frame is a sentinel + frame, a dummy frame, or a signal trampoline frame. */ + /* FIXME: cagney/2004-05-01: This sanity check shouldn't be + needed, instead the code should simpliy rely on its + analysis. */ + next_frame = get_next_frame (this_frame); + while (next_frame && get_frame_type (next_frame) == INLINE_FRAME) + next_frame = get_next_frame (next_frame); + if (next_frame + && get_frame_type (get_next_frame (this_frame)) == NORMAL_FRAME) + return 0; + + /* If we really have a frameless function, %r14 must be valid + -- in particular, it must point to a different function. */ + reg = get_frame_register_unsigned (this_frame, S390_RETADDR_REGNUM); + reg = gdbarch_addr_bits_remove (gdbarch, reg) - 1; + if (get_pc_function_start (reg) == func) + { + /* However, there is one case where it *is* valid for %r14 + to point to the same function -- if this is a recursive + call, and we have stopped in the prologue *before* the + stack frame was allocated. + + Recognize this case by looking ahead a bit ... */ + + struct s390_prologue_data data2; + pv_t *sp = &data2.gpr[S390_SP_REGNUM - S390_R0_REGNUM]; + + if (!(s390_analyze_prologue (gdbarch, func, (CORE_ADDR)-1, &data2) + && pv_is_register (*sp, S390_SP_REGNUM) + && sp->k != 0)) + return 0; + } + } + + /* OK, we've found valid prologue data. */ + size = -sp->k; + + /* If the frame pointer originally also holds the same value + as the stack pointer, we're probably using it. If it holds + some other value -- even a constant offset -- it is most + likely used as temp register. */ + if (pv_is_identical (*sp, *fp)) + frame_pointer = S390_FRAME_REGNUM; + else + frame_pointer = S390_SP_REGNUM; + + /* If we've detected a function with stack frame, we'll still have to + treat it as frameless if we're currently within the function epilog + code at a point where the frame pointer has already been restored. + This can only happen in an innermost frame. */ + /* FIXME: cagney/2004-05-01: This sanity check shouldn't be needed, + instead the code should simpliy rely on its analysis. */ + next_frame = get_next_frame (this_frame); + while (next_frame && get_frame_type (next_frame) == INLINE_FRAME) + next_frame = get_next_frame (next_frame); + if (size > 0 + && (next_frame == NULL + || get_frame_type (get_next_frame (this_frame)) != NORMAL_FRAME)) + { + /* See the comment in s390_stack_frame_destroyed_p on why this is + not completely reliable ... */ + if (s390_stack_frame_destroyed_p (gdbarch, get_frame_pc (this_frame))) + { + memset (&data, 0, sizeof (data)); + size = 0; + frame_pointer = S390_SP_REGNUM; + } + } + + /* Once we know the frame register and the frame size, we can unwind + the current value of the frame register from the next frame, and + add back the frame size to arrive that the previous frame's + stack pointer value. */ + prev_sp = get_frame_register_unsigned (this_frame, frame_pointer) + size; + cfa = prev_sp + 16*word_size + 32; + + /* Set up ABI call-saved/call-clobbered registers. */ + for (i = 0; i < S390_NUM_REGS; i++) + if (!s390_register_call_saved (gdbarch, i)) + trad_frame_set_unknown (info->saved_regs, i); + + /* CC is always call-clobbered. */ + trad_frame_set_unknown (info->saved_regs, S390_PSWM_REGNUM); + + /* Record the addresses of all register spill slots the prologue parser + has recognized. Consider only registers defined as call-saved by the + ABI; for call-clobbered registers the parser may have recognized + spurious stores. */ + + for (i = 0; i < 16; i++) + if (s390_register_call_saved (gdbarch, S390_R0_REGNUM + i) + && data.gpr_slot[i] != 0) + info->saved_regs[S390_R0_REGNUM + i].addr = cfa - data.gpr_slot[i]; + + for (i = 0; i < 16; i++) + if (s390_register_call_saved (gdbarch, S390_F0_REGNUM + i) + && data.fpr_slot[i] != 0) + info->saved_regs[S390_F0_REGNUM + i].addr = cfa - data.fpr_slot[i]; + + /* Function return will set PC to %r14. */ + info->saved_regs[S390_PSWA_REGNUM] = info->saved_regs[S390_RETADDR_REGNUM]; + + /* In frameless functions, we unwind simply by moving the return + address to the PC. However, if we actually stored to the + save area, use that -- we might only think the function frameless + because we're in the middle of the prologue ... */ + if (size == 0 + && !trad_frame_addr_p (info->saved_regs, S390_PSWA_REGNUM)) + { + info->saved_regs[S390_PSWA_REGNUM].realreg = S390_RETADDR_REGNUM; + } + + /* Another sanity check: unless this is a frameless function, + we should have found spill slots for SP and PC. + If not, we cannot unwind further -- this happens e.g. in + libc's thread_start routine. */ + if (size > 0) + { + if (!trad_frame_addr_p (info->saved_regs, S390_SP_REGNUM) + || !trad_frame_addr_p (info->saved_regs, S390_PSWA_REGNUM)) + prev_sp = -1; + } + + /* We use the current value of the frame register as local_base, + and the top of the register save area as frame_base. */ + if (prev_sp != -1) + { + info->frame_base = prev_sp + 16*word_size + 32; + info->local_base = prev_sp - size; + } + + return 1; +} + +/* Unwind THIS_FRAME and write the information into unwind cache INFO using + back chain unwinding. Helper for s390_frame_unwind_cache. */ + +static void +s390_backchain_frame_unwind_cache (struct frame_info *this_frame, + struct s390_unwind_cache *info) +{ + struct gdbarch *gdbarch = get_frame_arch (this_frame); + int word_size = gdbarch_ptr_bit (gdbarch) / 8; + enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); + CORE_ADDR backchain; + ULONGEST reg; + LONGEST sp, tmp; + int i; + + /* Set up ABI call-saved/call-clobbered registers. */ + for (i = 0; i < S390_NUM_REGS; i++) + if (!s390_register_call_saved (gdbarch, i)) + trad_frame_set_unknown (info->saved_regs, i); + + /* CC is always call-clobbered. */ + trad_frame_set_unknown (info->saved_regs, S390_PSWM_REGNUM); + + /* Get the backchain. */ + reg = get_frame_register_unsigned (this_frame, S390_SP_REGNUM); + if (!safe_read_memory_integer (reg, word_size, byte_order, &tmp)) + tmp = 0; + backchain = (CORE_ADDR) tmp; + + /* A zero backchain terminates the frame chain. As additional + sanity check, let's verify that the spill slot for SP in the + save area pointed to by the backchain in fact links back to + the save area. */ + if (backchain != 0 + && safe_read_memory_integer (backchain + 15*word_size, + word_size, byte_order, &sp) + && (CORE_ADDR)sp == backchain) + { + /* We don't know which registers were saved, but it will have + to be at least %r14 and %r15. This will allow us to continue + unwinding, but other prev-frame registers may be incorrect ... */ + info->saved_regs[S390_SP_REGNUM].addr = backchain + 15*word_size; + info->saved_regs[S390_RETADDR_REGNUM].addr = backchain + 14*word_size; + + /* Function return will set PC to %r14. */ + info->saved_regs[S390_PSWA_REGNUM] + = info->saved_regs[S390_RETADDR_REGNUM]; + + /* We use the current value of the frame register as local_base, + and the top of the register save area as frame_base. */ + info->frame_base = backchain + 16*word_size + 32; + info->local_base = reg; + } + + info->func = get_frame_pc (this_frame); +} + +/* Unwind THIS_FRAME and return the corresponding unwind cache for + s390_frame_unwind and s390_frame_base. */ + +static struct s390_unwind_cache * +s390_frame_unwind_cache (struct frame_info *this_frame, + void **this_prologue_cache) +{ + struct s390_unwind_cache *info; + + if (*this_prologue_cache) + return (struct s390_unwind_cache *) *this_prologue_cache; + + info = FRAME_OBSTACK_ZALLOC (struct s390_unwind_cache); + *this_prologue_cache = info; + info->saved_regs = trad_frame_alloc_saved_regs (this_frame); + info->func = -1; + info->frame_base = -1; + info->local_base = -1; + + TRY + { + /* Try to use prologue analysis to fill the unwind cache. + If this fails, fall back to reading the stack backchain. */ + if (!s390_prologue_frame_unwind_cache (this_frame, info)) + s390_backchain_frame_unwind_cache (this_frame, info); + } + CATCH (ex, RETURN_MASK_ERROR) + { + if (ex.error != NOT_AVAILABLE_ERROR) + throw_exception (ex); + } + END_CATCH + + return info; +} + +/* Implement this_id frame_unwind method for s390_frame_unwind. */ + +static void +s390_frame_this_id (struct frame_info *this_frame, + void **this_prologue_cache, + struct frame_id *this_id) +{ + struct s390_unwind_cache *info + = s390_frame_unwind_cache (this_frame, this_prologue_cache); + + if (info->frame_base == -1) + { + if (info->func != -1) + *this_id = frame_id_build_unavailable_stack (info->func); + return; + } + + *this_id = frame_id_build (info->frame_base, info->func); +} + +/* Implement prev_register frame_unwind method for s390_frame_unwind. */ + +static struct value * +s390_frame_prev_register (struct frame_info *this_frame, + void **this_prologue_cache, int regnum) +{ + struct s390_unwind_cache *info + = s390_frame_unwind_cache (this_frame, this_prologue_cache); + + return s390_trad_frame_prev_register (this_frame, info->saved_regs, regnum); +} + +/* Default S390 frame unwinder. */ + +static const struct frame_unwind s390_frame_unwind = { + NORMAL_FRAME, + default_frame_unwind_stop_reason, + s390_frame_this_id, + s390_frame_prev_register, + NULL, + default_frame_sniffer +}; + +/* Code stubs and their stack frames. For things like PLTs and NULL + function calls (where there is no true frame and the return address + is in the RETADDR register). */ + +struct s390_stub_unwind_cache +{ + CORE_ADDR frame_base; + struct trad_frame_saved_reg *saved_regs; +}; + +/* Unwind THIS_FRAME and return the corresponding unwind cache for + s390_stub_frame_unwind. */ + +static struct s390_stub_unwind_cache * +s390_stub_frame_unwind_cache (struct frame_info *this_frame, + void **this_prologue_cache) +{ + struct gdbarch *gdbarch = get_frame_arch (this_frame); + int word_size = gdbarch_ptr_bit (gdbarch) / 8; + struct s390_stub_unwind_cache *info; + ULONGEST reg; + + if (*this_prologue_cache) + return (struct s390_stub_unwind_cache *) *this_prologue_cache; + + info = FRAME_OBSTACK_ZALLOC (struct s390_stub_unwind_cache); + *this_prologue_cache = info; + info->saved_regs = trad_frame_alloc_saved_regs (this_frame); + + /* The return address is in register %r14. */ + info->saved_regs[S390_PSWA_REGNUM].realreg = S390_RETADDR_REGNUM; + + /* Retrieve stack pointer and determine our frame base. */ + reg = get_frame_register_unsigned (this_frame, S390_SP_REGNUM); + info->frame_base = reg + 16*word_size + 32; + + return info; +} + +/* Implement this_id frame_unwind method for s390_stub_frame_unwind. */ + +static void +s390_stub_frame_this_id (struct frame_info *this_frame, + void **this_prologue_cache, + struct frame_id *this_id) +{ + struct s390_stub_unwind_cache *info + = s390_stub_frame_unwind_cache (this_frame, this_prologue_cache); + *this_id = frame_id_build (info->frame_base, get_frame_pc (this_frame)); +} + +/* Implement prev_register frame_unwind method for s390_stub_frame_unwind. */ + +static struct value * +s390_stub_frame_prev_register (struct frame_info *this_frame, + void **this_prologue_cache, int regnum) +{ + struct s390_stub_unwind_cache *info + = s390_stub_frame_unwind_cache (this_frame, this_prologue_cache); + return s390_trad_frame_prev_register (this_frame, info->saved_regs, regnum); +} + +/* Implement sniffer frame_unwind method for s390_stub_frame_unwind. */ + +static int +s390_stub_frame_sniffer (const struct frame_unwind *self, + struct frame_info *this_frame, + void **this_prologue_cache) +{ + CORE_ADDR addr_in_block; + bfd_byte insn[S390_MAX_INSTR_SIZE]; + + /* If the current PC points to non-readable memory, we assume we + have trapped due to an invalid function pointer call. We handle + the non-existing current function like a PLT stub. */ + addr_in_block = get_frame_address_in_block (this_frame); + if (in_plt_section (addr_in_block) + || s390_readinstruction (insn, get_frame_pc (this_frame)) < 0) + return 1; + return 0; +} + +/* S390 stub frame unwinder. */ + +static const struct frame_unwind s390_stub_frame_unwind = { + NORMAL_FRAME, + default_frame_unwind_stop_reason, + s390_stub_frame_this_id, + s390_stub_frame_prev_register, + NULL, + s390_stub_frame_sniffer +}; + +/* Frame base handling. */ + +static CORE_ADDR +s390_frame_base_address (struct frame_info *this_frame, void **this_cache) +{ + struct s390_unwind_cache *info + = s390_frame_unwind_cache (this_frame, this_cache); + return info->frame_base; +} + +static CORE_ADDR +s390_local_base_address (struct frame_info *this_frame, void **this_cache) +{ + struct s390_unwind_cache *info + = s390_frame_unwind_cache (this_frame, this_cache); + return info->local_base; +} + +static const struct frame_base s390_frame_base = { + &s390_frame_unwind, + s390_frame_base_address, + s390_local_base_address, + s390_local_base_address +}; + +/* Miscellaneous. */ + +/* Implement gdbarch_gcc_target_options. GCC does not know "-m32" or + "-mcmodel=large". */ + +static char * +s390_gcc_target_options (struct gdbarch *gdbarch) +{ + return xstrdup (gdbarch_ptr_bit (gdbarch) == 64 ? "-m64" : "-m31"); +} + +/* Implement gdbarch_gnu_triplet_regexp. Target triplets are "s390-*" + for 31-bit and "s390x-*" for 64-bit, while the BFD arch name is + always "s390". Note that an s390x compiler supports "-m31" as + well. */ + +static const char * +s390_gnu_triplet_regexp (struct gdbarch *gdbarch) +{ + return "s390x?"; +} + +/* Implementation of `gdbarch_stap_is_single_operand', as defined in + gdbarch.h. */ + +static int +s390_stap_is_single_operand (struct gdbarch *gdbarch, const char *s) +{ + return ((isdigit (*s) && s[1] == '(' && s[2] == '%') /* Displacement + or indirection. */ + || *s == '%' /* Register access. */ + || isdigit (*s)); /* Literal number. */ +} + +/* gdbarch init. */ + +/* Validate the range of registers. NAMES must be known at compile time. */ + +#define s390_validate_reg_range(feature, tdesc_data, start, names) \ +do \ +{ \ + for (int i = 0; i < ARRAY_SIZE (names); i++) \ + if (!tdesc_numbered_register (feature, tdesc_data, start + i, names[i])) \ + return false; \ +} \ +while (0) + +/* Validate the target description. Also numbers registers contained in + tdesc. */ + +static bool +s390_tdesc_valid (struct gdbarch_tdep *tdep, + struct tdesc_arch_data *tdesc_data) +{ + static const char *const psw[] = { + "pswm", "pswa" + }; + static const char *const gprs[] = { + "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", + "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15" + }; + static const char *const fprs[] = { + "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", + "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15" + }; + static const char *const acrs[] = { + "acr0", "acr1", "acr2", "acr3", "acr4", "acr5", "acr6", "acr7", + "acr8", "acr9", "acr10", "acr11", "acr12", "acr13", "acr14", "acr15" + }; + static const char *const gprs_lower[] = { + "r0l", "r1l", "r2l", "r3l", "r4l", "r5l", "r6l", "r7l", + "r8l", "r9l", "r10l", "r11l", "r12l", "r13l", "r14l", "r15l" + }; + static const char *const gprs_upper[] = { + "r0h", "r1h", "r2h", "r3h", "r4h", "r5h", "r6h", "r7h", + "r8h", "r9h", "r10h", "r11h", "r12h", "r13h", "r14h", "r15h" + }; + static const char *const tdb_regs[] = { + "tdb0", "tac", "tct", "atia", + "tr0", "tr1", "tr2", "tr3", "tr4", "tr5", "tr6", "tr7", + "tr8", "tr9", "tr10", "tr11", "tr12", "tr13", "tr14", "tr15" + }; + static const char *const vxrs_low[] = { + "v0l", "v1l", "v2l", "v3l", "v4l", "v5l", "v6l", "v7l", "v8l", + "v9l", "v10l", "v11l", "v12l", "v13l", "v14l", "v15l", + }; + static const char *const vxrs_high[] = { + "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23", "v24", + "v25", "v26", "v27", "v28", "v29", "v30", "v31", + }; + static const char *const gs_cb[] = { + "gsd", "gssm", "gsepla", + }; + static const char *const gs_bc[] = { + "bc_gsd", "bc_gssm", "bc_gsepla", + }; + + const struct target_desc *tdesc = tdep->tdesc; + const struct tdesc_feature *feature; + + /* Core registers, i.e. general purpose and PSW. */ + feature = tdesc_find_feature (tdesc, "org.gnu.gdb.s390.core"); + if (feature == NULL) + return false; + + s390_validate_reg_range (feature, tdesc_data, S390_PSWM_REGNUM, psw); + + if (tdesc_unnumbered_register (feature, "r0")) + { + s390_validate_reg_range (feature, tdesc_data, S390_R0_REGNUM, gprs); + } + else + { + tdep->have_upper = true; + s390_validate_reg_range (feature, tdesc_data, S390_R0_REGNUM, + gprs_lower); + s390_validate_reg_range (feature, tdesc_data, S390_R0_UPPER_REGNUM, + gprs_upper); + } + + /* Floating point registers. */ + feature = tdesc_find_feature (tdesc, "org.gnu.gdb.s390.fpr"); + if (feature == NULL) + return false; + + if (!tdesc_numbered_register (feature, tdesc_data, S390_FPC_REGNUM, "fpc")) + return false; + + s390_validate_reg_range (feature, tdesc_data, S390_F0_REGNUM, fprs); + + /* Access control registers. */ + feature = tdesc_find_feature (tdesc, "org.gnu.gdb.s390.acr"); + if (feature == NULL) + return false; + + s390_validate_reg_range (feature, tdesc_data, S390_A0_REGNUM, acrs); + + /* Optional GNU/Linux-specific "registers". */ + feature = tdesc_find_feature (tdesc, "org.gnu.gdb.s390.linux"); + if (feature) + { + tdesc_numbered_register (feature, tdesc_data, + S390_ORIG_R2_REGNUM, "orig_r2"); + + if (tdesc_numbered_register (feature, tdesc_data, + S390_LAST_BREAK_REGNUM, "last_break")) + tdep->have_linux_v1 = true; + + if (tdesc_numbered_register (feature, tdesc_data, + S390_SYSTEM_CALL_REGNUM, "system_call")) + tdep->have_linux_v2 = true; + + if (tdep->have_linux_v2 && !tdep->have_linux_v1) + return false; + } + + /* Transaction diagnostic block. */ + feature = tdesc_find_feature (tdesc, "org.gnu.gdb.s390.tdb"); + if (feature) + { + s390_validate_reg_range (feature, tdesc_data, S390_TDB_DWORD0_REGNUM, + tdb_regs); + tdep->have_tdb = true; + } + + /* Vector registers. */ + feature = tdesc_find_feature (tdesc, "org.gnu.gdb.s390.vx"); + if (feature) + { + s390_validate_reg_range (feature, tdesc_data, S390_V0_LOWER_REGNUM, + vxrs_low); + s390_validate_reg_range (feature, tdesc_data, S390_V16_REGNUM, + vxrs_high); + tdep->have_vx = true; + } + + /* Guarded-storage registers. */ + feature = tdesc_find_feature (tdesc, "org.gnu.gdb.s390.gs"); + if (feature) + { + s390_validate_reg_range (feature, tdesc_data, S390_GSD_REGNUM, gs_cb); + tdep->have_gs = true; + } + + /* Guarded-storage broadcast control. */ + feature = tdesc_find_feature (tdesc, "org.gnu.gdb.s390.gsbc"); + if (feature) + { + if (!tdep->have_gs) + return false; + s390_validate_reg_range (feature, tdesc_data, S390_BC_GSD_REGNUM, + gs_bc); + } + + return true; +} + +/* Allocate and initialize new gdbarch_tdep. Caller is responsible to free + memory after use. */ + +static struct gdbarch_tdep * +s390_gdbarch_tdep_alloc () +{ + struct gdbarch_tdep *tdep = XCNEW (struct gdbarch_tdep); + + tdep->tdesc = NULL; + + tdep->abi = ABI_NONE; + tdep->vector_abi = S390_VECTOR_ABI_NONE; + + tdep->gpr_full_regnum = -1; + tdep->v0_full_regnum = -1; + tdep->pc_regnum = -1; + tdep->cc_regnum = -1; + + tdep->have_upper = false; + tdep->have_linux_v1 = false; + tdep->have_linux_v2 = false; + tdep->have_tdb = false; + tdep->have_vx = false; + tdep->have_gs = false; + + tdep->s390_syscall_record = NULL; + + return tdep; +} + +/* Set up gdbarch struct. */ + +static struct gdbarch * +s390_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) +{ + const struct target_desc *tdesc = info.target_desc; + int first_pseudo_reg, last_pseudo_reg; + static const char *const stap_register_prefixes[] = { "%", NULL }; + static const char *const stap_register_indirection_prefixes[] = { "(", + NULL }; + static const char *const stap_register_indirection_suffixes[] = { ")", + NULL }; + + /* Otherwise create a new gdbarch for the specified machine type. */ + struct gdbarch_tdep *tdep = s390_gdbarch_tdep_alloc (); + struct gdbarch *gdbarch = gdbarch_alloc (&info, tdep); + struct tdesc_arch_data *tdesc_data = tdesc_data_alloc (); + info.tdesc_data = tdesc_data; + + set_gdbarch_believe_pcc_promotion (gdbarch, 0); + set_gdbarch_char_signed (gdbarch, 0); + + /* S/390 GNU/Linux uses either 64-bit or 128-bit long doubles. + We can safely let them default to 128-bit, since the debug info + will give the size of type actually used in each case. */ + set_gdbarch_long_double_bit (gdbarch, 128); + set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad); + + /* Breakpoints. */ + /* Amount PC must be decremented by after a breakpoint. This is + often the number of bytes returned by gdbarch_breakpoint_from_pc but not + always. */ + set_gdbarch_decr_pc_after_break (gdbarch, 2); + set_gdbarch_breakpoint_kind_from_pc (gdbarch, s390_breakpoint::kind_from_pc); + set_gdbarch_sw_breakpoint_from_kind (gdbarch, s390_breakpoint::bp_from_kind); + + /* Displaced stepping. */ + set_gdbarch_displaced_step_copy_insn (gdbarch, + s390_displaced_step_copy_insn); + set_gdbarch_displaced_step_fixup (gdbarch, s390_displaced_step_fixup); + set_gdbarch_displaced_step_location (gdbarch, linux_displaced_step_location); + set_gdbarch_displaced_step_hw_singlestep (gdbarch, s390_displaced_step_hw_singlestep); + set_gdbarch_software_single_step (gdbarch, s390_software_single_step); + set_gdbarch_max_insn_length (gdbarch, S390_MAX_INSTR_SIZE); + + /* Prologue analysis. */ + set_gdbarch_skip_prologue (gdbarch, s390_skip_prologue); + + /* Register handling. */ + set_gdbarch_num_regs (gdbarch, S390_NUM_REGS); + set_gdbarch_sp_regnum (gdbarch, S390_SP_REGNUM); + set_gdbarch_fp0_regnum (gdbarch, S390_F0_REGNUM); + set_gdbarch_guess_tracepoint_registers (gdbarch, + s390_guess_tracepoint_registers); + set_gdbarch_stab_reg_to_regnum (gdbarch, s390_dwarf_reg_to_regnum); + set_gdbarch_dwarf2_reg_to_regnum (gdbarch, s390_dwarf_reg_to_regnum); + set_gdbarch_value_from_register (gdbarch, s390_value_from_register); + + /* Pseudo registers. */ + set_gdbarch_pseudo_register_read (gdbarch, s390_pseudo_register_read); + set_gdbarch_pseudo_register_write (gdbarch, s390_pseudo_register_write); + set_tdesc_pseudo_register_name (gdbarch, s390_pseudo_register_name); + set_tdesc_pseudo_register_type (gdbarch, s390_pseudo_register_type); + set_tdesc_pseudo_register_reggroup_p (gdbarch, + s390_pseudo_register_reggroup_p); + set_gdbarch_ax_pseudo_register_collect (gdbarch, + s390_ax_pseudo_register_collect); + set_gdbarch_ax_pseudo_register_push_stack + (gdbarch, s390_ax_pseudo_register_push_stack); + set_gdbarch_gen_return_address (gdbarch, s390_gen_return_address); + + /* Inferior function calls. */ + set_gdbarch_push_dummy_call (gdbarch, s390_push_dummy_call); + set_gdbarch_dummy_id (gdbarch, s390_dummy_id); + set_gdbarch_frame_align (gdbarch, s390_frame_align); + set_gdbarch_return_value (gdbarch, s390_return_value); + + /* Frame handling. */ + /* Stack grows downward. */ + set_gdbarch_inner_than (gdbarch, core_addr_lessthan); + set_gdbarch_stack_frame_destroyed_p (gdbarch, s390_stack_frame_destroyed_p); + dwarf2_frame_set_init_reg (gdbarch, s390_dwarf2_frame_init_reg); + dwarf2_frame_set_adjust_regnum (gdbarch, s390_adjust_frame_regnum); + dwarf2_append_unwinders (gdbarch); + set_gdbarch_unwind_pc (gdbarch, s390_unwind_pc); + set_gdbarch_unwind_sp (gdbarch, s390_unwind_sp); + + switch (info.bfd_arch_info->mach) + { + case bfd_mach_s390_31: + set_gdbarch_addr_bits_remove (gdbarch, s390_addr_bits_remove); + break; + + case bfd_mach_s390_64: + set_gdbarch_long_bit (gdbarch, 64); + set_gdbarch_long_long_bit (gdbarch, 64); + set_gdbarch_ptr_bit (gdbarch, 64); + set_gdbarch_address_class_type_flags (gdbarch, + s390_address_class_type_flags); + set_gdbarch_address_class_type_flags_to_name (gdbarch, + s390_address_class_type_flags_to_name); + set_gdbarch_address_class_name_to_type_flags (gdbarch, + s390_address_class_name_to_type_flags); + break; + } + + /* SystemTap functions. */ + set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes); + set_gdbarch_stap_register_indirection_prefixes (gdbarch, + stap_register_indirection_prefixes); + set_gdbarch_stap_register_indirection_suffixes (gdbarch, + stap_register_indirection_suffixes); + + set_gdbarch_disassembler_options (gdbarch, &s390_disassembler_options); + set_gdbarch_valid_disassembler_options (gdbarch, + disassembler_options_s390 ()); + + /* Miscellaneous. */ + set_gdbarch_stap_is_single_operand (gdbarch, s390_stap_is_single_operand); + set_gdbarch_gcc_target_options (gdbarch, s390_gcc_target_options); + set_gdbarch_gnu_triplet_regexp (gdbarch, s390_gnu_triplet_regexp); + + /* Initialize the OSABI. */ + gdbarch_init_osabi (info, gdbarch); + + /* Check any target description for validity. */ + gdb_assert (tdesc_has_registers (tdep->tdesc)); + if (!s390_tdesc_valid (tdep, tdesc_data)) + { + tdesc_data_cleanup (tdesc_data); + xfree (tdep); + gdbarch_free (gdbarch); + return NULL; + } + + /* Determine vector ABI. */ +#ifdef HAVE_ELF + if (tdep->have_vx + && info.abfd != NULL + && info.abfd->format == bfd_object + && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour + && bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU, + Tag_GNU_S390_ABI_Vector) == 2) + tdep->vector_abi = S390_VECTOR_ABI_128; +#endif + + /* Find a candidate among extant architectures. */ + for (arches = gdbarch_list_lookup_by_info (arches, &info); + arches != NULL; + arches = gdbarch_list_lookup_by_info (arches->next, &info)) + { + struct gdbarch_tdep *tmp = gdbarch_tdep (arches->gdbarch); + if (!tmp) + continue; + /* A program can 'choose' not to use the vector registers when they + are present. Leading to the same tdesc but different tdep and + thereby a different gdbarch. */ + if (tmp->vector_abi != tdep->vector_abi) + continue; + + tdesc_data_cleanup (tdesc_data); + xfree (tdep); + gdbarch_free (gdbarch); + return arches->gdbarch; + } + + tdesc_use_registers (gdbarch, tdep->tdesc, tdesc_data); + set_gdbarch_register_name (gdbarch, s390_register_name); + + /* Assign pseudo register numbers. */ + first_pseudo_reg = gdbarch_num_regs (gdbarch); + last_pseudo_reg = first_pseudo_reg; + if (tdep->have_upper) + { + tdep->gpr_full_regnum = last_pseudo_reg; + last_pseudo_reg += 16; + } + if (tdep->have_vx) + { + tdep->v0_full_regnum = last_pseudo_reg; + last_pseudo_reg += 16; + } + tdep->pc_regnum = last_pseudo_reg++; + tdep->cc_regnum = last_pseudo_reg++; + set_gdbarch_pc_regnum (gdbarch, tdep->pc_regnum); + set_gdbarch_num_pseudo_regs (gdbarch, last_pseudo_reg - first_pseudo_reg); + + /* Frame handling. */ + frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer); + frame_unwind_append_unwinder (gdbarch, &s390_stub_frame_unwind); + frame_unwind_append_unwinder (gdbarch, &s390_frame_unwind); + frame_base_set_default (gdbarch, &s390_frame_base); + + return gdbarch; +} + +void +_initialize_s390_tdep (void) +{ + /* Hook us into the gdbarch mechanism. */ + register_gdbarch_init (bfd_arch_s390, s390_gdbarch_init); +} diff --git a/gdb/s390-tdep.h b/gdb/s390-tdep.h new file mode 100644 index 0000000000..4a44da0190 --- /dev/null +++ b/gdb/s390-tdep.h @@ -0,0 +1,318 @@ +/* Target-dependent code for s390. + + Copyright (C) 2003-2018 Free Software Foundation, Inc. + + This file is part of GDB. + + This program is free software; you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation; either version 3 of the License, or + (at your option) any later version. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with this program. If not, see . */ + +#ifndef S390_TDEP_H +#define S390_TDEP_H + +#include "prologue-value.h" + +enum s390_abi_kind +{ + ABI_NONE, + ABI_LINUX_S390, + ABI_LINUX_ZSERIES +}; + +enum s390_vector_abi_kind +{ + S390_VECTOR_ABI_NONE, + S390_VECTOR_ABI_128 +}; + +/* The tdep structure. */ + +struct gdbarch_tdep +{ + /* Target description. */ + const struct target_desc *tdesc; + + /* ABI version. */ + enum s390_abi_kind abi; + + /* Vector ABI. */ + enum s390_vector_abi_kind vector_abi; + + /* Pseudo register numbers. */ + int gpr_full_regnum; + int pc_regnum; + int cc_regnum; + int v0_full_regnum; + + bool have_upper; + bool have_linux_v1; + bool have_linux_v2; + bool have_tdb; + bool have_vx; + bool have_gs; + + /* Hook to record OS specific systemcall. */ + int (*s390_syscall_record) (struct regcache *regcache, LONGEST svc_number); +}; + +/* Decoding S/390 instructions. */ + +/* Named opcode values for the S/390 instructions we recognize. Some + instructions have their opcode split across two fields; those are the + op1_* and op2_* enums. */ + +enum +{ + op1_lhi = 0xa7, op2_lhi = 0x08, + op1_lghi = 0xa7, op2_lghi = 0x09, + op1_lgfi = 0xc0, op2_lgfi = 0x01, + op_lr = 0x18, + op_lgr = 0xb904, + op_l = 0x58, + op1_ly = 0xe3, op2_ly = 0x58, + op1_lg = 0xe3, op2_lg = 0x04, + op_lm = 0x98, + op1_lmy = 0xeb, op2_lmy = 0x98, + op1_lmg = 0xeb, op2_lmg = 0x04, + op_st = 0x50, + op1_sty = 0xe3, op2_sty = 0x50, + op1_stg = 0xe3, op2_stg = 0x24, + op_std = 0x60, + op_stm = 0x90, + op1_stmy = 0xeb, op2_stmy = 0x90, + op1_stmg = 0xeb, op2_stmg = 0x24, + op1_aghi = 0xa7, op2_aghi = 0x0b, + op1_ahi = 0xa7, op2_ahi = 0x0a, + op1_agfi = 0xc2, op2_agfi = 0x08, + op1_afi = 0xc2, op2_afi = 0x09, + op1_algfi= 0xc2, op2_algfi= 0x0a, + op1_alfi = 0xc2, op2_alfi = 0x0b, + op_ar = 0x1a, + op_agr = 0xb908, + op_a = 0x5a, + op1_ay = 0xe3, op2_ay = 0x5a, + op1_ag = 0xe3, op2_ag = 0x08, + op1_slgfi= 0xc2, op2_slgfi= 0x04, + op1_slfi = 0xc2, op2_slfi = 0x05, + op_sr = 0x1b, + op_sgr = 0xb909, + op_s = 0x5b, + op1_sy = 0xe3, op2_sy = 0x5b, + op1_sg = 0xe3, op2_sg = 0x09, + op_nr = 0x14, + op_ngr = 0xb980, + op_la = 0x41, + op1_lay = 0xe3, op2_lay = 0x71, + op1_larl = 0xc0, op2_larl = 0x00, + op_basr = 0x0d, + op_bas = 0x4d, + op_bcr = 0x07, + op_bc = 0x0d, + op_bctr = 0x06, + op_bctgr = 0xb946, + op_bct = 0x46, + op1_bctg = 0xe3, op2_bctg = 0x46, + op_bxh = 0x86, + op1_bxhg = 0xeb, op2_bxhg = 0x44, + op_bxle = 0x87, + op1_bxleg= 0xeb, op2_bxleg= 0x45, + op1_bras = 0xa7, op2_bras = 0x05, + op1_brasl= 0xc0, op2_brasl= 0x05, + op1_brc = 0xa7, op2_brc = 0x04, + op1_brcl = 0xc0, op2_brcl = 0x04, + op1_brct = 0xa7, op2_brct = 0x06, + op1_brctg= 0xa7, op2_brctg= 0x07, + op_brxh = 0x84, + op1_brxhg= 0xec, op2_brxhg= 0x44, + op_brxle = 0x85, + op1_brxlg= 0xec, op2_brxlg= 0x45, + op_svc = 0x0a, +}; + +/* Hardware capabilities. */ + +#ifndef HWCAP_S390_HIGH_GPRS +#define HWCAP_S390_HIGH_GPRS 512 +#endif + +#ifndef HWCAP_S390_TE +#define HWCAP_S390_TE 1024 +#endif + +#ifndef HWCAP_S390_VX +#define HWCAP_S390_VX 2048 +#endif + +#ifndef HWCAP_S390_GS +#define HWCAP_S390_GS 16384 +#endif + +/* Register information. */ + +/* Program Status Word. */ +#define S390_PSWM_REGNUM 0 +#define S390_PSWA_REGNUM 1 +/* General Purpose Registers. */ +#define S390_R0_REGNUM 2 +#define S390_R1_REGNUM 3 +#define S390_R2_REGNUM 4 +#define S390_R3_REGNUM 5 +#define S390_R4_REGNUM 6 +#define S390_R5_REGNUM 7 +#define S390_R6_REGNUM 8 +#define S390_R7_REGNUM 9 +#define S390_R8_REGNUM 10 +#define S390_R9_REGNUM 11 +#define S390_R10_REGNUM 12 +#define S390_R11_REGNUM 13 +#define S390_R12_REGNUM 14 +#define S390_R13_REGNUM 15 +#define S390_R14_REGNUM 16 +#define S390_R15_REGNUM 17 +/* Access Registers. */ +#define S390_A0_REGNUM 18 +#define S390_A1_REGNUM 19 +#define S390_A2_REGNUM 20 +#define S390_A3_REGNUM 21 +#define S390_A4_REGNUM 22 +#define S390_A5_REGNUM 23 +#define S390_A6_REGNUM 24 +#define S390_A7_REGNUM 25 +#define S390_A8_REGNUM 26 +#define S390_A9_REGNUM 27 +#define S390_A10_REGNUM 28 +#define S390_A11_REGNUM 29 +#define S390_A12_REGNUM 30 +#define S390_A13_REGNUM 31 +#define S390_A14_REGNUM 32 +#define S390_A15_REGNUM 33 +/* Floating Point Control Word. */ +#define S390_FPC_REGNUM 34 +/* Floating Point Registers. */ +#define S390_F0_REGNUM 35 +#define S390_F1_REGNUM 36 +#define S390_F2_REGNUM 37 +#define S390_F3_REGNUM 38 +#define S390_F4_REGNUM 39 +#define S390_F5_REGNUM 40 +#define S390_F6_REGNUM 41 +#define S390_F7_REGNUM 42 +#define S390_F8_REGNUM 43 +#define S390_F9_REGNUM 44 +#define S390_F10_REGNUM 45 +#define S390_F11_REGNUM 46 +#define S390_F12_REGNUM 47 +#define S390_F13_REGNUM 48 +#define S390_F14_REGNUM 49 +#define S390_F15_REGNUM 50 +/* General Purpose Register Upper Halves. */ +#define S390_R0_UPPER_REGNUM 51 +#define S390_R1_UPPER_REGNUM 52 +#define S390_R2_UPPER_REGNUM 53 +#define S390_R3_UPPER_REGNUM 54 +#define S390_R4_UPPER_REGNUM 55 +#define S390_R5_UPPER_REGNUM 56 +#define S390_R6_UPPER_REGNUM 57 +#define S390_R7_UPPER_REGNUM 58 +#define S390_R8_UPPER_REGNUM 59 +#define S390_R9_UPPER_REGNUM 60 +#define S390_R10_UPPER_REGNUM 61 +#define S390_R11_UPPER_REGNUM 62 +#define S390_R12_UPPER_REGNUM 63 +#define S390_R13_UPPER_REGNUM 64 +#define S390_R14_UPPER_REGNUM 65 +#define S390_R15_UPPER_REGNUM 66 +/* GNU/Linux-specific optional registers. */ +#define S390_ORIG_R2_REGNUM 67 +#define S390_LAST_BREAK_REGNUM 68 +#define S390_SYSTEM_CALL_REGNUM 69 +/* Transaction diagnostic block. */ +#define S390_TDB_DWORD0_REGNUM 70 +#define S390_TDB_ABORT_CODE_REGNUM 71 +#define S390_TDB_CONFLICT_TOKEN_REGNUM 72 +#define S390_TDB_ATIA_REGNUM 73 +#define S390_TDB_R0_REGNUM 74 +#define S390_TDB_R1_REGNUM 75 +#define S390_TDB_R2_REGNUM 76 +#define S390_TDB_R3_REGNUM 77 +#define S390_TDB_R4_REGNUM 78 +#define S390_TDB_R5_REGNUM 79 +#define S390_TDB_R6_REGNUM 80 +#define S390_TDB_R7_REGNUM 81 +#define S390_TDB_R8_REGNUM 82 +#define S390_TDB_R9_REGNUM 83 +#define S390_TDB_R10_REGNUM 84 +#define S390_TDB_R11_REGNUM 85 +#define S390_TDB_R12_REGNUM 86 +#define S390_TDB_R13_REGNUM 87 +#define S390_TDB_R14_REGNUM 88 +#define S390_TDB_R15_REGNUM 89 +/* Vector registers. */ +#define S390_V0_LOWER_REGNUM 90 +#define S390_V1_LOWER_REGNUM 91 +#define S390_V2_LOWER_REGNUM 92 +#define S390_V3_LOWER_REGNUM 93 +#define S390_V4_LOWER_REGNUM 94 +#define S390_V5_LOWER_REGNUM 95 +#define S390_V6_LOWER_REGNUM 96 +#define S390_V7_LOWER_REGNUM 97 +#define S390_V8_LOWER_REGNUM 98 +#define S390_V9_LOWER_REGNUM 99 +#define S390_V10_LOWER_REGNUM 100 +#define S390_V11_LOWER_REGNUM 101 +#define S390_V12_LOWER_REGNUM 102 +#define S390_V13_LOWER_REGNUM 103 +#define S390_V14_LOWER_REGNUM 104 +#define S390_V15_LOWER_REGNUM 105 +#define S390_V16_REGNUM 106 +#define S390_V17_REGNUM 107 +#define S390_V18_REGNUM 108 +#define S390_V19_REGNUM 109 +#define S390_V20_REGNUM 110 +#define S390_V21_REGNUM 111 +#define S390_V22_REGNUM 112 +#define S390_V23_REGNUM 113 +#define S390_V24_REGNUM 114 +#define S390_V25_REGNUM 115 +#define S390_V26_REGNUM 116 +#define S390_V27_REGNUM 117 +#define S390_V28_REGNUM 118 +#define S390_V29_REGNUM 119 +#define S390_V30_REGNUM 120 +#define S390_V31_REGNUM 121 +#define S390_GSD_REGNUM 122 +#define S390_GSSM_REGNUM 123 +#define S390_GSEPLA_REGNUM 124 +#define S390_BC_GSD_REGNUM 125 +#define S390_BC_GSSM_REGNUM 126 +#define S390_BC_GSEPLA_REGNUM 127 +/* Total. */ +#define S390_NUM_REGS 128 + +#define S390_NUM_GPRS 16 +#define S390_NUM_FPRS 16 + +#define S390_MAX_INSTR_SIZE 6 + +/* Special register usage. */ +#define S390_SP_REGNUM S390_R15_REGNUM +#define S390_RETADDR_REGNUM S390_R14_REGNUM +#define S390_FRAME_REGNUM S390_R11_REGNUM + +/* Frame unwinding. */ + +extern struct value *s390_trad_frame_prev_register + (struct frame_info *this_frame, struct trad_frame_saved_reg saved_regs[], + int regnum); + +#endif /* S390_TDEP_H */