[v5,1/4] gdb: Add OpenRISC or1k and or1knd target support

Message ID 61be7be503333904f9533549b0a809bed4066ac3.1489728533.git.shorne@gmail.com
State New, archived
Headers

Commit Message

Stafford Horne March 17, 2017, 5:43 a.m. UTC
  From: Franck Jullien <franck.jullien@gmail.com>

This patch prepates the current GDB port of the openrisc processor from
https://github.com/openrisc/binutils-gdb for upstream merging.

Testing has been done with a cgen sim provided in a separate patch. This
has been tested with 2 toolchains. GCC [1] 5.4.0 from the openrisc
project with Newlib [2] and GCC 5.4.0 with Musl [3] 1.1.4.

It supports or1knd (no delay slot target).
The default target is or1k (with delay slot).

You can change the target arch with:

(gdb) set architecture or1knd
The target architecture is assumed to be or1knd

[1] https://github.com/openrisc/or1k-gcc
[2] https://github.com/openrisc/newlib
[3] https://github.com/openrisc/musl-cross

gdb/doc/ChangeLog:

2017-01-20  Stafford Horne  <shorne@gmail.com>
	    Stefan Wallentowitz  <stefan@wallentowitz.de>
	    Franck Jullien  <franck.jullien@gmail.com>
	    Jeremy Bennett  <jeremy.bennett@embecosm.com>

	* gdb.texinfo: Add OpenRISC documentation.

gdb/ChangeLog:

2017-01-20  Stafford Horne  <shorne@gmail.com>
	    Stefan Wallentowitz  <stefan@wallentowitz.de>
	    Stefan Kristiansson  <stefan.kristiansson@saunalahti.fi>
	    Franck Jullien  <franck.jullien@gmail.com>
	    Jeremy Bennett  <jeremy.bennett@embecosm.com>

	* configure.tgt: Add targets for or1k and or1knd.
	* or1k-tdep.c: New.
	* or1k-tdep.h: New.
---
 gdb/configure.tgt   |    6 +
 gdb/doc/gdb.texinfo |   70 +++
 gdb/or1k-tdep.c     | 1329 +++++++++++++++++++++++++++++++++++++++++++++++++++
 gdb/or1k-tdep.h     |   56 +++
 4 files changed, 1461 insertions(+)
 create mode 100644 gdb/or1k-tdep.c
 create mode 100644 gdb/or1k-tdep.h
  

Comments

Eli Zaretskii March 17, 2017, 8:48 a.m. UTC | #1
> From: Stafford Horne <shorne@gmail.com>
> Cc: Franck Jullien <franck.jullien@gmail.com>,	openrisc@lists.librecores.org
> Date: Fri, 17 Mar 2017 14:43:17 +0900
> 
> This patch prepates the current GDB port of the openrisc processor from
> https://github.com/openrisc/binutils-gdb for upstream merging.

Thanks.  Some comments on the documentation part of the patch.

> +@node OpenRISC 1000
> +@subsection OpenRISC 1000
> +@cindex OpenRISC 1000
> +
> +Previous development versions of @value{GDBN} supported remote connection
> +via a proprietary JTAG protocol using the @samp{target jtag} command.
> +Support for this has now been dropped.
> +
> +Also, previous verions had support for a @samp{spr} command to access
> +OpenRISC's numberous special purpose registers.  These are now available
> +via the normal @samp{info registers} command.

I'm not sure this is appropriate for the manual.  The manual should
describe what GDB currently does, not what it did before and no longer
does.  This text is more appropriate for NEWS, which specifically
describe changes wrt previous code.

> +@kindex target remote
> +@item target remote
> +
> +Connects to remote JTAG server.
> +This is now the only way to connect to a remote OpenRISC 1000
> +target.

Likewise for this sentence: if you don't describe any other way of
connecting, there's no need to say this is the only way.

> +There are some known problems with the current implementation

This should have a colon at its end.

> +@cindex OpenRISC 1000 known problems
> +
> +@enumerate
> +
> +@item
> +@cindex OpenRISC 1000 known problems, hardware breakpoints and watchpoints

It is not useful to have 2 or more index entries starting from the
same string and pointing to the same or very close places.  I would
suggest instead

  @cindex hardware breakpoints and watchpoints, known problems on OpenRISC 1000

> +Some OpenRISC 1000 targets support hardware breakpoints and watchpoints.
> +Consult the target documentation for details.  @value{GDBN} is not
> +perfect in handling of watchpoints.  It is possible to allocate hardware
> +watchpoints and not discover until running that sufficient watchpoints
> +are not available.  It is also possible that GDB will report watchpoints
> +being hit spuriously.  This can be down to the assembly code having
> +additional memory accesses that are not obviously reflected in the
> +source code.

The index entry mentions hardware breakpoints, but the text
exclusively mentions only watchpoints.  Are hardware breakpoints
affected like that as well?

> +@item
> +@cindex OpenRISC 1000 known problems, architectural compatibility

Same comment as above about this index entry.

> +The OpenRISC 1000 architecture has evolved since the first port for
> +@value{GDBN}.  In particular the structure of the Unit Present register has
> +changed and the CPU Configuration register has been added.  The port of
> +@value{GDBN} version @value{GDBVN} uses the @emph{current}
> +specification of the OpenRISC 1000.

I'm not sure what this text conveys.  Can you tell why it is important
to have this information in the manual?  I might then suggest a change
in wording.
  
Stafford Horne March 17, 2017, 9:32 a.m. UTC | #2
On Fri, Mar 17, 2017 at 10:48:25AM +0200, Eli Zaretskii wrote:
> > From: Stafford Horne <shorne@gmail.com>
> > Cc: Franck Jullien <franck.jullien@gmail.com>,	openrisc@lists.librecores.org
> > Date: Fri, 17 Mar 2017 14:43:17 +0900
> > 
> > This patch prepates the current GDB port of the openrisc processor from
> > https://github.com/openrisc/binutils-gdb for upstream merging.
> 
> Thanks.  Some comments on the documentation part of the patch.

Thanks for reviewing, this is actually the second pass of the
documentation.  More reviews are welcome.

> > +@node OpenRISC 1000
> > +@subsection OpenRISC 1000
> > +@cindex OpenRISC 1000
> > +
> > +Previous development versions of @value{GDBN} supported remote connection
> > +via a proprietary JTAG protocol using the @samp{target jtag} command.
> > +Support for this has now been dropped.
> > +
> > +Also, previous verions had support for a @samp{spr} command to access
> > +OpenRISC's numberous special purpose registers.  These are now available
> > +via the normal @samp{info registers} command.
> 
> I'm not sure this is appropriate for the manual.  The manual should
> describe what GDB currently does, not what it did before and no longer
> does.  This text is more appropriate for NEWS, which specifically
> describe changes wrt previous code.

Sure, I can remove.

> > +@kindex target remote
> > +@item target remote
> > +
> > +Connects to remote JTAG server.
> > +This is now the only way to connect to a remote OpenRISC 1000
> > +target.
> 
> Likewise for this sentence: if you don't describe any other way of
> connecting, there's no need to say this is the only way.

Right. I will correct it to better follow other architectures.

> > +There are some known problems with the current implementation
> 
> This should have a colon at its end.

ok

> > +@cindex OpenRISC 1000 known problems
> > +
> > +@enumerate
> > +
> > +@item
> > +@cindex OpenRISC 1000 known problems, hardware breakpoints and watchpoints
> 
> It is not useful to have 2 or more index entries starting from the
> same string and pointing to the same or very close places.  I would
> suggest instead
> 
>   @cindex hardware breakpoints and watchpoints, known problems on OpenRISC 1000

Good point

> > +Some OpenRISC 1000 targets support hardware breakpoints and watchpoints.
> > +Consult the target documentation for details.  @value{GDBN} is not
> > +perfect in handling of watchpoints.  It is possible to allocate hardware
> > +watchpoints and not discover until running that sufficient watchpoints
> > +are not available.  It is also possible that GDB will report watchpoints
> > +being hit spuriously.  This can be down to the assembly code having
> > +additional memory accesses that are not obviously reflected in the
> > +source code.
> 
> The index entry mentions hardware breakpoints, but the text
> exclusively mentions only watchpoints.  Are hardware breakpoints
> affected like that as well?

I don't think it applies to both, Ill add a statement explaining about
breakpoints.  Maybe they should be separate points if they are
different.

> > +@item
> > +@cindex OpenRISC 1000 known problems, architectural compatibility
> 
> Same comment as above about this index entry.

Yes

> > +The OpenRISC 1000 architecture has evolved since the first port for
> > +@value{GDBN}.  In particular the structure of the Unit Present register has
> > +changed and the CPU Configuration register has been added.  The port of
> > +@value{GDBN} version @value{GDBVN} uses the @emph{current}
> > +specification of the OpenRISC 1000.
> 
> I'm not sure what this text conveys.  Can you tell why it is important
> to have this information in the manual?  I might then suggest a change
> in wording.

Its saying that if you are using an old version of the CPU it might not
run as expected with this version of GDB.  Ill change to explain that
without talking about previous ports of GDB.

Something like:

  Earlier version of the OpenRISC architecture did not include the UPR
  (unit present) or CPUCFGR (CPU configuration) registers.  This version
  of @value{GDBN} expects these to be present.

-Stafford
  
Eli Zaretskii March 17, 2017, 9:35 a.m. UTC | #3
> Date: Fri, 17 Mar 2017 18:32:47 +0900
> From: Stafford Horne <shorne@gmail.com>
> Cc: gdb-patches@sourceware.org, franck.jullien@gmail.com,
> 	openrisc@lists.librecores.org
> 
> > > +The OpenRISC 1000 architecture has evolved since the first port for
> > > +@value{GDBN}.  In particular the structure of the Unit Present register has
> > > +changed and the CPU Configuration register has been added.  The port of
> > > +@value{GDBN} version @value{GDBVN} uses the @emph{current}
> > > +specification of the OpenRISC 1000.
> > 
> > I'm not sure what this text conveys.  Can you tell why it is important
> > to have this information in the manual?  I might then suggest a change
> > in wording.
> 
> Its saying that if you are using an old version of the CPU it might not
> run as expected with this version of GDB.  Ill change to explain that
> without talking about previous ports of GDB.
> 
> Something like:
> 
>   Earlier version of the OpenRISC architecture did not include the UPR
>   (unit present) or CPUCFGR (CPU configuration) registers.  This version
>   of @value{GDBN} expects these to be present.

That's okay, but we should also tell the reader what to do if the
expected registers are not present.  Is there anything they could do
except upgrade to a newer version of OpenRISC?
  
Stafford Horne March 17, 2017, 10:03 a.m. UTC | #4
On Fri, Mar 17, 2017 at 11:35:27AM +0200, Eli Zaretskii wrote:
> > Date: Fri, 17 Mar 2017 18:32:47 +0900
> > From: Stafford Horne <shorne@gmail.com>
> > Cc: gdb-patches@sourceware.org, franck.jullien@gmail.com,
> > 	openrisc@lists.librecores.org
> > 
> > > > +The OpenRISC 1000 architecture has evolved since the first port for
> > > > +@value{GDBN}.  In particular the structure of the Unit Present register has
> > > > +changed and the CPU Configuration register has been added.  The port of
> > > > +@value{GDBN} version @value{GDBVN} uses the @emph{current}
> > > > +specification of the OpenRISC 1000.
> > > 
> > > I'm not sure what this text conveys.  Can you tell why it is important
> > > to have this information in the manual?  I might then suggest a change
> > > in wording.
> > 
> > Its saying that if you are using an old version of the CPU it might not
> > run as expected with this version of GDB.  Ill change to explain that
> > without talking about previous ports of GDB.
> > 
> > Something like:
> > 
> >   Earlier version of the OpenRISC architecture did not include the UPR
> >   (unit present) or CPUCFGR (CPU configuration) registers.  This version
> >   of @value{GDBN} expects these to be present.
> 
> That's okay, but we should also tell the reader what to do if the
> expected registers are not present.  Is there anything they could do
> except upgrade to a newer version of OpenRISC?

Actually, sorry, I was going off the text above.  When I checked the
code it seems I removed the code that depended on these registers after
earlier reviews.

The XML target description includes all of these registers and more.  I
may either remove this or change to explain about the target description
architecture dependency.  But the target description is not a hard
dependency.

Thanks for the quick feedback.

-Stafford
  
Yao Qi April 4, 2017, 9:17 p.m. UTC | #5
Stafford Horne <shorne@gmail.com> writes:

Hi Stafford,
Have some cycles today, so I can review the patch.

> +/* The target-dependent structure for gdbarch.  */
> +
> +struct gdbarch_tdep
> +{
> +  int bytes_per_word;
> +  int bytes_per_address;

Don't need these two fields, we can get bfd_arch_info via
gdbarch_bfd_arch_info (gdbarch), and access its fields to compute
bytes_per_word and bytes_per_address.

> +  CGEN_CPU_DESC gdb_cgen_cpu_desc;
> +};
> +
> +/* Support functions for the architecture definition.  */
> +
> +/* Get an instruction from memory.  */
> +
> +static ULONGEST
> +or1k_fetch_instruction (struct gdbarch *gdbarch, CORE_ADDR addr)
> +{
> +  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
> +  gdb_byte buf[OR1K_INSTLEN];
> +
> +  if (target_read_memory (addr, buf, OR1K_INSTLEN)) {

target_read_code, it uses cache, and helps on performance.

> +    memory_error (TARGET_XFER_E_IO, addr);
> +  }
> +
> +  return extract_unsigned_integer (buf, OR1K_INSTLEN, byte_order);
> +}
> +

> +
> +	  /* Check we got something, and if so skip on.  */
> +	  if (start_ptr == end_ptr)
> +	    throw_quit ("bitstring \"%s\" at offset %d has no length field.\n",
> +			format, i);

s/throw_quit/error/
multiple instances of this.


> +/* Analyze a l.addi instruction in form: l.addi  rD,rA,I.  This is used
> +   to parse add instructions during various prologue analysis routines.  */
> +

Document the argument and return value.

> +static int

static bool

> +or1k_analyse_l_addi (uint32_t inst, unsigned int *rd_ptr,
> +		     unsigned int *ra_ptr, int *simm_ptr)
> +{
> +  /* Instruction fields */
> +  uint32_t rd, ra, i;
> +
> +  if (or1k_analyse_inst (inst, "10 0111 %5b %5b %16b", &rd, &ra, &i))
> +    {
> +      /* Found it.  Construct the result fields.  */
> +      *rd_ptr = (unsigned int) rd;
> +      *ra_ptr = (unsigned int) ra;
> +      *simm_ptr = (int) (((i & 0x8000) == 0x8000) ? 0xffff0000 | i : i);
> +
> +      return 1; /* Success */
> +    }
> +  else
> +    return 0; /* Failure */
> +}
> +

> +/* Functions defining the architecture.  */

What is this?

> +
> +/* Implement the return_value gdbarch method.  */
> +
> +static enum return_value_convention
> +or1k_return_value (struct gdbarch *gdbarch, struct value *functype,
> +		   struct type *valtype, struct regcache *regcache,
> +		   gdb_byte *readbuf, const gdb_byte *writebuf)
> +{
> +  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
> +  enum type_code rv_type = TYPE_CODE (valtype);
> +  unsigned int rv_size = TYPE_LENGTH (valtype);
> +  int bpw = (gdbarch_tdep (gdbarch))->bytes_per_word;
> +
> +  /* Deal with struct/union as addresses.  If an array won't fit in a single
> +     register it is returned as address.  Anything larger than 2 registers needs
> +     to also be passed as address (matches gcc default_return_in_memory).  */
> +  if ((TYPE_CODE_STRUCT == rv_type) || (TYPE_CODE_UNION == rv_type)
> +      || ((TYPE_CODE_ARRAY == rv_type) && (rv_size > bpw))
> +      || (rv_size > 2 * bpw))

If I read the comment and code correctly, register size is
"bytes_per_word", and bytes_per_address is added in gdbarch_tdep.  Does
this imply that register size may be different (in bytes) on different
processors?

> +    {
> +      if (readbuf != NULL)
> +	{
> +	  ULONGEST tmp;
> +
> +	  regcache_cooked_read_unsigned (regcache, OR1K_RV_REGNUM, &tmp);
> +	  read_memory (tmp, readbuf, rv_size);
> +	}
> +      if (writebuf != NULL)
> +	{
> +	  ULONGEST tmp;
> +
> +	  regcache_cooked_read_unsigned (regcache, OR1K_RV_REGNUM, &tmp);
> +	  write_memory (tmp, writebuf, rv_size);
> +	}
> +
> +      return RETURN_VALUE_ABI_RETURNS_ADDRESS;
> +    }
> +
> +  if (rv_size <= bpw)
> +    {
> +      /* Up to one word scalars are returned in R11.  */
> +      if (readbuf != NULL)
> +	{
> +	  ULONGEST tmp;
> +
> +	  regcache_cooked_read_unsigned (regcache, OR1K_RV_REGNUM, &tmp);
> +	  store_unsigned_integer (readbuf, rv_size, byte_order, tmp);
> +
> +	}
> +      if (writebuf != NULL)
> +	{
> +	  gdb_byte buf[4];

Overflow if bpw is greater than 4?

> +	  memset (buf, 0, sizeof (buf)); /* Zero pad if < bpw bytes.  */
> +
> +	  if (BFD_ENDIAN_BIG == byte_order)
> +	    memcpy (buf + sizeof (buf) - rv_size, writebuf, rv_size);
> +	  else
> +	    memcpy (buf, writebuf, rv_size);
> +
> +	  regcache_cooked_write (regcache, OR1K_RV_REGNUM, buf);
> +	}
> +    }
> +  else
> +    {
> +      /* 2 word scalars are returned in r11/r12 (with the MS word in r11).  */


> +
> +/* OR1K always uses a l.trap instruction for breakpoints.  */
> +
> +constexpr gdb_byte or1k_break_insn[] = {0x21, 0x00, 0x00, 0x01};
> +
> +typedef BP_MANIPULATION (or1k_break_insn) or1k_breakpoint;
> +
> +/* Implement the single_step_through_delay gdbarch method.  */
> +
> +static int
> +or1k_single_step_through_delay (struct gdbarch *gdbarch,
> +				struct frame_info *this_frame)
> +{
> +  ULONGEST val;
> +  CORE_ADDR ppc;
> +  CORE_ADDR npc;
> +  CGEN_FIELDS tmp_fields;
> +  const CGEN_INSN *insn;
> +  struct regcache *regcache = get_current_regcache ();
> +  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
> +
> +  /* Get and the previous and current instruction addresses.  If they are not

This line is too long.

> +
> +/* Name for or1k general registers.  */
> +
> +static const char *const or1k_reg_names[OR1K_NUM_REGS] = {
> +  /* general purpose registers */
> +  "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
> +  "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
> +  "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
> +  "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
> +
> +  /* previous program counter, next program counter and status register */
> +  "ppc", "npc", "sr"
> +};
> +
> +/* Implement the register_name gdbarch method.  */
> +
> +static const char *
> +or1k_register_name (struct gdbarch *gdbarch, int regnum)
> +{
> +  if (0 <= regnum && regnum < OR1K_NUM_REGS)
> +    return or1k_reg_names[regnum];
> +  else
> +    return NULL;
> +}
> +

Register names can be from target description, so we don't need this
function.

> +/* Implement the register_type gdbarch method.  */
> +
> +static struct type *
> +or1k_register_type (struct gdbarch *gdbarch, int regnum)
> +{
> +  if ((regnum >= 0) && (regnum < OR1K_NUM_REGS))
> +    {
> +      switch (regnum)
> +	{
> +	case OR1K_PPC_REGNUM:
> +	case OR1K_NPC_REGNUM:
> +	  return builtin_type (gdbarch)->builtin_func_ptr; /* Pointer to code */
> +
> +	case OR1K_SP_REGNUM:
> +	case OR1K_FP_REGNUM:
> +	  return builtin_type (gdbarch)->builtin_data_ptr; /* Pointer to data */
> +
> +	default:
> +	  return builtin_type (gdbarch)->builtin_uint32; /* Data */
> +	}
> +    }
> +
> +  internal_error (__FILE__, __LINE__,
> +		  _("or1k_register_type: illegal register number %d"),
> +		  regnum);
> +}
> +

Likewise.

> +/* Implement the register_reggroup_p gdbarch method.  */
> +
> +static int
> +or1k_register_reggroup_p (struct gdbarch *gdbarch,
> +			  int regnum, struct reggroup *group)
> +{
> +  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
> +
> +  /* All register group.  */
> +  if (group == all_reggroup)
> +    return ((regnum >= 0)
> +	    && (regnum < OR1K_NUM_REGS)
> +	    && (or1k_register_name (gdbarch, regnum)[0] != '\0'));
> +
> +  /* For now everything except the PC.  */
> +  if (group == general_reggroup)
> +    return ((regnum >= OR1K_ZERO_REGNUM)
> +	    && (regnum < OR1K_MAX_GPR_REGS)
> +	    && (regnum != OR1K_PPC_REGNUM) && (regnum != OR1K_NPC_REGNUM));
> +
> +  if (group == float_reggroup)
> +    return 0; /* No float regs */
> +
> +  if (group == vector_reggroup)
> +    return 0; /* No vector regs */
> +
> +  /* For any that are not handled above.  */
> +  return default_register_reggroup_p (gdbarch, regnum, group);
> +}
> +

Likewise.

> +static int
> +or1k_is_arg_reg (unsigned int regnum)
> +{
> +  return (OR1K_FIRST_ARG_REGNUM <= regnum)
> +    && (regnum <= OR1K_LAST_ARG_REGNUM);
> +}
> +
> +static int
> +or1k_is_callee_saved_reg (unsigned int regnum)
> +{
> +  return (OR1K_FIRST_SAVED_REGNUM <= regnum) && (0 == regnum % 2);
> +}
> +
> +/* Implement the skip_prologue gdbarch method.  */
> +
> +static CORE_ADDR
> +or1k_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
> +{
> +  CORE_ADDR start_pc;
> +  CORE_ADDR addr;
> +  uint32_t inst;
> +
> +  unsigned int ra, rb, rd; /* for instruction analysis */
> +  int simm;
> +
> +  int frame_size = 0;
> +
> +  /* Try using SAL first if we have symbolic information available.  This only
> +     works for DWARF 2, not STABS.  */
> +
> +  if (find_pc_partial_function (pc, NULL, &start_pc, NULL))
> +    {
> +      CORE_ADDR prologue_end = skip_prologue_using_sal (gdbarch, pc);
> +
> +      if (0 != prologue_end)
> +	{
> +	  struct symtab_and_line prologue_sal = find_pc_line (start_pc, 0);
> +	  struct compunit_symtab *compunit
> +	    = SYMTAB_COMPUNIT (prologue_sal.symtab);
> +	  const char *debug_format = COMPUNIT_DEBUGFORMAT (compunit);
> +
> +	  if ((NULL != debug_format)
> +	      && (strlen ("dwarf") <= strlen (debug_format))
> +	      && (0 == strncasecmp ("dwarf", debug_format, strlen ("dwarf"))))
> +	    return (prologue_end > pc) ? prologue_end : pc;
> +	}
> +    }
> +
> +  /* Look to see if we can find any of the standard prologue sequence.  All
> +     quite difficult, since any or all of it may be missing.  So this is just a

This line is too long.

> +     best guess!  */
> +
> +  addr = pc; /* Where we have got to */
> +  inst = or1k_fetch_instruction (gdbarch, addr);
> +
> +  /* Look for the new stack pointer being set up.  */
> +  if (or1k_analyse_l_addi (inst, &rd, &ra, &simm)
> +      && (OR1K_SP_REGNUM == rd) && (OR1K_SP_REGNUM == ra)
> +      && (simm < 0) && (0 == (simm % 4)))
> +    {
> +      frame_size = -simm;
> +      addr += OR1K_INSTLEN;
> +      inst = or1k_fetch_instruction (gdbarch, addr);
> +    }
> +
> +  /* Look for the frame pointer being manipulated.  */
> +  if (or1k_analyse_l_sw (inst, &simm, &ra, &rb)
> +      && (OR1K_SP_REGNUM == ra) && (OR1K_FP_REGNUM == rb)
> +      && (simm >= 0) && (0 == (simm % 4)))
> +    {
> +      addr += OR1K_INSTLEN;
> +      inst = or1k_fetch_instruction (gdbarch, addr);
> +
> +      gdb_assert (or1k_analyse_l_addi (inst, &rd, &ra, &simm)
> +		  && (OR1K_FP_REGNUM == rd) && (OR1K_SP_REGNUM == ra)
> +		  && (simm == frame_size));
> +
> +      addr += OR1K_INSTLEN;
> +      inst = or1k_fetch_instruction (gdbarch, addr);
> +    }
> +
> +  /* Look for the link register being saved.  */
> +  if (or1k_analyse_l_sw (inst, &simm, &ra, &rb)
> +      && (OR1K_SP_REGNUM == ra) && (OR1K_LR_REGNUM == rb)
> +      && (simm >= 0) && (0 == (simm % 4)))
> +    {
> +      addr += OR1K_INSTLEN;
> +      inst = or1k_fetch_instruction (gdbarch, addr);
> +    }
> +
> +  /* Look for arguments or callee-saved register being saved.  The register
> +     must be one of the arguments (r3-r8) or the 10 callee saved registers
> +     (r10, r12, r14, r16, r18, r20, r22, r24, r26, r28, r30).  The base
> +     register must be the FP (for the args) or the SP (for the callee_saved
> +     registers).  */
> +  while (1)

Can you give an upper-bound of the loop?  The endless loop looks scary
to me.

> +    {
> +      if (or1k_analyse_l_sw (inst, &simm, &ra, &rb)
> +	  && (((OR1K_FP_REGNUM == ra) && or1k_is_arg_reg (rb))
> +	      || ((OR1K_SP_REGNUM == ra) && or1k_is_callee_saved_reg (rb)))
> +	  && (0 == (simm % 4)))
> +	{
> +	  addr += OR1K_INSTLEN;
> +	  inst = or1k_fetch_instruction (gdbarch, addr);
> +	}
> +      else
> +	{
> +	  /* Nothing else to look for.  We have found the end of the
> +	     prologue.  */
> +	  return addr;

break the loop and "return addr" at the end of this function.

> +
> +/* Implement the push_dummy_call gdbarch method.  */
> +
> +static CORE_ADDR
> +or1k_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
> +		      struct regcache *regcache, CORE_ADDR bp_addr,
> +		      int nargs, struct value **args, CORE_ADDR sp,
> +		      int struct_return, CORE_ADDR struct_addr)
> +{
> +
> +  int argreg;
> +  int argnum;
> +  int first_stack_arg;
> +  int stack_offset = 0;
> +  int heap_offset = 0;
> +  CORE_ADDR heap_sp = sp - 128;
> +  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
> +  int bpa = (gdbarch_tdep (gdbarch))->bytes_per_address;
> +  int bpw = (gdbarch_tdep (gdbarch))->bytes_per_word;
> +  struct type *func_type = value_type (function);
> +
> +  /* Return address */
> +  regcache_cooked_write_unsigned (regcache, OR1K_LR_REGNUM, bp_addr);
> +
> +  /* Register for the next argument.  */
> +  argreg = OR1K_FIRST_ARG_REGNUM;
> +
> +  /* Location for a returned structure.  This is passed as a silent first
> +     argument.  */
> +  if (struct_return)
> +    {
> +      regcache_cooked_write_unsigned (regcache, OR1K_FIRST_ARG_REGNUM,
> +				      struct_addr);
> +      argreg++;
> +    }
> +
> +  /* Put as many args as possible in registers.  */
> +  for (argnum = 0; argnum < nargs; argnum++)
> +    {
> +      const gdb_byte *val;
> +      gdb_byte valbuf[sizeof (ULONGEST)];
> +
> +      struct value *arg = args[argnum];
> +      struct type *arg_type = check_typedef (value_type (arg));
> +      int len = arg_type->length;
> +      enum type_code typecode = arg_type->main_type->code;

typecode = TYPE_CODE (arg_type);

> +
> +      if (TYPE_VARARGS (func_type) && argnum >= TYPE_NFIELDS (func_type))
> +	break; /* end or regular args, varargs go to stack.  */
> +
> +      /* Extract the value, either a reference or the data.  */
> +      if ((TYPE_CODE_STRUCT == typecode) || (TYPE_CODE_UNION == typecode)
> +	  || (len > bpw * 2))
> +	{
> +	  CORE_ADDR valaddr = value_address (arg);
> +
> +	  /* If the arg is fabricated (i.e. 3*i, instead of i) valaddr is
> +	     undefined.  */
> +	  if (valaddr == 0)
> +	    {
> +	      /* The argument needs to be copied into the target space.  Since
> +	         the bottom of the stack is reserved for function arguments
> +	         we store this at the these at the top growing down.  */
> +	      heap_offset += align_up (len, bpw);
> +	      valaddr = heap_sp + heap_offset;
> +
> +	      write_memory (valaddr, value_contents (arg), len);
> +	    }
> +
> +	  /* The ABI passes all structures by reference, so get its address.  */
> +	  store_unsigned_integer (valbuf, bpa, byte_order, valaddr);
> +	  len = bpa;
> +	  val = valbuf;
> +	}
> +      else
> +	{
> +	  /* Everything else, we just get the value.  */
> +	  val = value_contents (arg);
> +	}
> +
> +      /* Stick the value in a register.  */
> +      if (len > bpw)
> +	{
> +	  /* Big scalars use two registers, but need NOT be pair aligned.  */
> +
> +	  if (argreg <= (OR1K_LAST_ARG_REGNUM - 1))
> +	    {
> +	      ULONGEST regval =	extract_unsigned_integer (val, len, byte_order);
> +
> +	      unsigned int bits_per_word = bpw * 8;
> +	      ULONGEST mask = (((ULONGEST) 1) << bits_per_word) - 1;
> +	      ULONGEST lo = regval & mask;
> +	      ULONGEST hi = regval >> bits_per_word;
> +
> +	      regcache_cooked_write_unsigned (regcache, argreg, hi);
> +	      regcache_cooked_write_unsigned (regcache, argreg + 1, lo);
> +	      argreg += 2;
> +	    }
> +	  else
> +	    {
> +	      /* Run out of regs */
> +	      break;
> +	    }
> +	}
> +      else if (argreg <= OR1K_LAST_ARG_REGNUM)
> +	{
> +	  /* Smaller scalars fit in a single register.  */
> +	  regcache_cooked_write_unsigned
> +	    (regcache, argreg, extract_unsigned_integer (val, len, byte_order));
> +	  argreg++;
> +	}
> +      else
> +	{
> +	  /* Ran out of regs.  */
> +	  break;
> +	}
> +    }
> +
> +  first_stack_arg = argnum;
> +
> +  /* If we get here with argnum < nargs, then arguments remain to be placed on
> +     the stack.  This is tricky, since they must be pushed in reverse order and

These two lines are too long.

> +     the stack in the end must be aligned.  The only solution is to do it in
> +     two stages, the first to compute the stack size, the second to save the
> +     args.  */
> +
> +  for (argnum = first_stack_arg; argnum < nargs; argnum++)
> +    {
> +      struct value *arg = args[argnum];
> +      struct type *arg_type = check_typedef (value_type (arg));
> +      int len = arg_type->length;

TYPE_LENGTH (arg_type);

> +      enum type_code typecode = arg_type->main_type->code;
> +

TYPE_CODE (arg_type);


> +
> +
> +/* Support functions for frame handling.  */
> +
> +/* Initialize a prologue cache
> +
> +   We build a cache, saying where registers of the PREV frame can be found
> +   from the data so far set up in this THIS.
> +
> +   We also compute a unique ID for this frame, based on the function start
> +   address and the stack pointer (as it will be, even if it has yet to be
> +   computed.
> +
> +   STACK FORMAT
> +   ============
> +
> +   The OR1K has a falling stack frame and a simple prolog.  The Stack pointer
> +   is R1 and the frame pointer R2.  The frame base is therefore the address
> +   held in R2 and the stack pointer (R1) is the frame base of the NEXT frame.
> +
> +   l.addi  r1,r1,-frame_size	# SP now points to end of new stack frame
> +
> +   The stack pointer may not be set up in a frameless function (e.g. a simple
> +   leaf function).
> +
> +   l.sw    fp_loc(r1),r2        # old FP saved in new stack frame
> +   l.addi  r2,r1,frame_size     # FP now points to base of new stack frame
> +
> +   The frame pointer is not necessarily saved right at the end of the stack
> +   frame - OR1K saves enough space for any args to called functions right at
> +   the end (this is a difference from the Architecture Manual).
> +
> +   l.sw    lr_loc(r1),r9        # Link (return) address
> +
> +   The link register is usally saved at fp_loc - 4.  It may not be saved at all
> +   in a leaf function.
> +
> +   l.sw    reg_loc(r1),ry       # Save any callee saved regs
> +
> +   The offsets x for the callee saved registers generally (always?) rise in
> +   increments of 4, starting at fp_loc + 4.  If the frame pointer is omitted
> +   (an option to GCC), then it may not be saved at all.  There may be no callee
> +   saved registers.
> +
> +   So in summary none of this may be present.  However what is present seems
> +   always to follow this fixed order, and occur before any substantive code
> +   (it is possible for GCC to have more flexible scheduling of the prologue,
> +   but this does not seem to occur for OR1K).
> +
> +   ANALYSIS
> +   ========
> +
> +   This prolog is used, even for -O3 with GCC.
> +
> +   All this analysis must allow for the possibility that the PC is in the
> +   middle of the prologue.  Data in the cache should only be set up insofar as
> +   it has been computed.
> +
> +   HOWEVER.  The frame_id must be created with the SP *as it will be* at the
> +   end of the Prologue.  Otherwise a recursive call, checking the frame with
> +   the PC at the start address will end up with the same frame_id as the
> +   caller.
> +
> +   A suite of "helper" routines are used, allowing reuse for
> +   or1k_skip_prologue().
> +
> +   Reportedly, this is only valid for frames less than 0x7fff in size.  */
> +
> +static struct trad_frame_cache *
> +or1k_frame_cache (struct frame_info *this_frame, void **prologue_cache)
> +{
> +  struct gdbarch *gdbarch;
> +  struct trad_frame_cache *info;
> +
> +  CORE_ADDR this_pc;
> +  CORE_ADDR this_sp;
> +  CORE_ADDR this_sp_for_id;
> +  int frame_size = 0;
> +
> +  CORE_ADDR start_addr;
> +  CORE_ADDR end_addr;
> +
> +  if (frame_debug)
> +    fprintf_unfiltered (gdb_stdlog,
> +			"or1k_frame_cache, prologue_cache = 0x%p\n",
> +			*prologue_cache);

Can you add a new debug flag, like or1k_debug, to control this?  Each
backend in GDB (amd64-windows-tdep.c) use its own debug flag to control
the output related to frame unwinding.

> +  /* Get a new prologue cache and populate it with default values.  */
> +  info = trad_frame_cache_zalloc (this_frame);
> +  *prologue_cache = info;
> +
> +  /* Find the start address of THIS function (which is a NORMAL frame, even if
> +     the NEXT frame is the sentinel frame) and the end of its prologue.  */

Don't need to capitalize THIS, NORMAL, and NEXT.

> +
> +  /* The default frame base of THIS frame (for ID purposes only - frame base
> +     is an overloaded term) is its stack pointer.  For now we use the value of
> +     the SP register in THIS frame.  However if the PC is in the prologue of
> +     THIS frame, before the SP has been set up, then the value will actually
> +     be that of the PREV frame, and we'll need to adjust it later.  */
> +  trad_frame_set_this_base (info, this_sp);
> +  this_sp_for_id = this_sp;
> +
> +  /* The default is to find the PC of the PREVIOUS frame in the link register
> +     of this frame.  This may be changed if we find the link register was saved
> +     on the stack.  */
> +  trad_frame_set_reg_realreg (info, OR1K_NPC_REGNUM, OR1K_LR_REGNUM);
> +
> +  /* We should only examine code that is in the prologue.  This is all code up
> +     to (but not including) end_addr.  We should only populate the cache while
> +     the address is up to (but not including) the PC or end_addr, whichever is
> +     first.  */
> +  gdbarch = get_frame_arch (this_frame);
> +  end_addr = or1k_skip_prologue (gdbarch, start_addr);
> +
> +  /* All the following analysis only occurs if we are in the prologue and have
> +     executed the code.  Check we have a sane prologue size, and if zero we
> +     are frameless and can give up here.  */
> +  if (end_addr < start_addr)

How can it be?

> +    throw_quit ("end addr 0x%08x is less than start addr 0x%08x\n",
> +		(unsigned int) end_addr, (unsigned int) start_addr);

s/throw_quit/error/


> +
> +/* Data structures for the normal prologue-analysis-based unwinder.  */
> +
> +static const struct frame_unwind or1k_frame_unwind = {
> +  .type = NORMAL_FRAME,
> +  .stop_reason = default_frame_unwind_stop_reason,
> +  .this_id = or1k_frame_this_id,
> +  .prev_register = or1k_frame_prev_register,
> +  .unwind_data = NULL,
> +  .sniffer = default_frame_sniffer,
> +  .dealloc_cache = NULL,
> +  .prev_arch = NULL
> +};

Write the code this way,

static const struct frame_unwind or1k_frame_unwind =
{
  NORMAL_FRAME,
  default_frame_unwind_stop_reason,
  or1k_frame_this_id,
  or1k_frame_prev_register,
  NULL,
  default_frame_sniffer,
  NULL,
};

> +
> +/* Architecture initialization for OpenRISC 1000.  */
> +
> +static struct gdbarch *
> +or1k_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
> +{
...
> +  /* Check any target description for validity.  */
> +  if (tdesc_has_registers (info.target_desc))
> +    {
> +      const struct tdesc_feature *feature;
> +      int valid_p;
> +
> +      feature = tdesc_find_feature (info.target_desc, "org.gnu.gdb.or1k.group0");

This line is too long.  In patch 2/4, you defined 11 features, group0 -
group 10, but you only find feature group0.  Is group0 a required
feature?

> +      if (feature == NULL)
> +        return NULL;
> +
> +      tdesc_data = tdesc_data_alloc ();
> +
> +      valid_p = 1;
> +
> +      for (i = 0; i < OR1K_NUM_REGS; i++)
> +        valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
> +                                            or1k_reg_names[i]);
> +
> +      if (!valid_p)
> +        {
> +          tdesc_data_cleanup (tdesc_data);
> +          return NULL;
> +        }
> +    }
> +
> +  if (tdesc_data)

if (tdesc_data != NULL)

> +    {
> +      tdesc_use_registers (gdbarch, info.target_desc, tdesc_data);
> +
> +      /* Target descriptions may extend into the following groups.  */
> +      reggroup_add (gdbarch, general_reggroup);
> +      reggroup_add (gdbarch, system_reggroup);
> +      reggroup_add (gdbarch, float_reggroup);
> +      reggroup_add (gdbarch, vector_reggroup);
> +      reggroup_add (gdbarch, reggroup_new ("immu", USER_REGGROUP));
> +      reggroup_add (gdbarch, reggroup_new ("dmmu", USER_REGGROUP));
> +      reggroup_add (gdbarch, reggroup_new ("icache", USER_REGGROUP));
> +      reggroup_add (gdbarch, reggroup_new ("dcache", USER_REGGROUP));
> +      reggroup_add (gdbarch, reggroup_new ("pic", USER_REGGROUP));
> +      reggroup_add (gdbarch, reggroup_new ("timer", USER_REGGROUP));
> +      reggroup_add (gdbarch, reggroup_new ("power", USER_REGGROUP));
> +      reggroup_add (gdbarch, reggroup_new ("perf", USER_REGGROUP));
> +      reggroup_add (gdbarch, reggroup_new ("mac", USER_REGGROUP));
> +      reggroup_add (gdbarch, reggroup_new ("debug", USER_REGGROUP));
> +      reggroup_add (gdbarch, all_reggroup);
> +      reggroup_add (gdbarch, save_reggroup);
> +      reggroup_add (gdbarch, restore_reggroup);
> +    }
> +
> +  return gdbarch;
> +}
> +

> +
> +extern initialize_file_ftype _initialize_or1k_tdep; /* -Wmissing-prototypes */
> +
> +void
> +_initialize_or1k_tdep (void)
> +{
> +  /* Register this architecture.  */
> +  gdbarch_register (bfd_arch_or1k, or1k_gdbarch_init, or1k_dump_tdep);
> +
> +  /* Tell remote stub that we support XML target description.  */
> +  register_remote_support_xml ("or1k");

Can't remote stub think GDB support xml target description already?

> +}
> diff --git a/gdb/or1k-tdep.h b/gdb/or1k-tdep.h
> new file mode 100644
> index 0000000..edcad88
> --- /dev/null
> +++ b/gdb/or1k-tdep.h
> @@ -0,0 +1,56 @@
> +/* Definitions to target GDB to OpenRISC 1000 32-bit targets.
> +   Copyright (C) 2008-2017 Free Software Foundation, Inc.
> +
> +   This file is part of GDB.
> +
> +   This program is free software; you can redistribute it and/or modify it
> +   under the terms of the GNU General Public License as published by the Free
> +   Software Foundation; either version 3 of the License, or (at your option)
> +   any later version.
> +
> +   This program is distributed in the hope that it will be useful, but WITHOUT
> +   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
> +   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
> +   more details.
> +
> +   You should have received a copy of the GNU General Public License along
> +   With this program.  If not, see <http://www.gnu.org/licenses/>.  */
> +
> +
> +#ifndef OR1K_TDEP__H
> +#define OR1K_TDEP__H
> +
> +#ifndef TARGET_OR1K
> +#define TARGET_OR1K
> +#endif
> +
> +#include "opcodes/or1k-desc.h"
> +#include "opcodes/or1k-opc.h"
> +
> +/* General Purpose Registers */
> +#define OR1K_ZERO_REGNUM          0
> +#define OR1K_SP_REGNUM            1
> +#define OR1K_FP_REGNUM            2
> +#define OR1K_FIRST_ARG_REGNUM     3
> +#define OR1K_LAST_ARG_REGNUM      8
> +#define OR1K_LR_REGNUM            9
> +#define OR1K_FIRST_SAVED_REGNUM  10
> +#define OR1K_RV_REGNUM           11
> +#define OR1K_PPC_REGNUM          (OR1K_MAX_GPR_REGS + 0)
> +#define OR1K_NPC_REGNUM          (OR1K_MAX_GPR_REGS + 1)
> +#define OR1K_SR_REGNUM           (OR1K_MAX_GPR_REGS + 2)

A general comments on these macros, if they are only used in
or1k-tdep.c, why don't you move these macros into or1k-tdep.c?

> +
> +/* Properties of the architecture. GDB mapping of registers is all the GPRs
> +   and SPRs followed by the PPC, NPC and SR at the end. Red zone is the area
> +   past the end of the stack reserved for exception handlers etc.  */
> +
> +#define OR1K_MAX_GPR_REGS            32
> +#define OR1K_NUM_PSEUDO_REGS         0
> +#define OR1K_NUM_REGS               (OR1K_MAX_GPR_REGS + 3)
> +#define OR1K_STACK_ALIGN             4
> +#define OR1K_INSTLEN                 4
> +#define OR1K_INSTBITLEN             (OR1K_INSTLEN * 8)
> +#define OR1K_NUM_TAP_RECORDS         8
> +#define OR1K_FRAME_RED_ZONE_SIZE     2536
> +
> +#endif /* OR1K_TDEP__H */
  
Stafford Horne April 8, 2017, 9:36 a.m. UTC | #6
Hi Yao,

Thanks for reviewing, I had a few of these fixed already, but I havent
had time to send a new series.  I hope I can get around to it and these
in a week or so.

On Tue, Apr 04, 2017 at 10:17:29PM +0100, Yao Qi wrote:
> Stafford Horne <shorne@gmail.com> writes:
> 
> Hi Stafford,
> Have some cycles today, so I can review the patch.
> 
> > +/* The target-dependent structure for gdbarch.  */
> > +
> > +struct gdbarch_tdep
> > +{
> > +  int bytes_per_word;
> > +  int bytes_per_address;
> 
> Don't need these two fields, we can get bfd_arch_info via
> gdbarch_bfd_arch_info (gdbarch), and access its fields to compute
> bytes_per_word and bytes_per_address.

These are computed that way in or1k_gdbarch_init():

  tdep->bytes_per_word = binfo->bits_per_word / binfo->bits_per_byte;
  tdep->bytes_per_address = binfo->bits_per_address / binfo->bits_per_byte;

The idea is that these are used a few times to its better for
readability to not have to compute every time.

I would prefer to keep.

> > +  CGEN_CPU_DESC gdb_cgen_cpu_desc;
> > +};
> > +
> > +/* Support functions for the architecture definition.  */
> > +
> > +/* Get an instruction from memory.  */
> > +
> > +static ULONGEST
> > +or1k_fetch_instruction (struct gdbarch *gdbarch, CORE_ADDR addr)
> > +{
> > +  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
> > +  gdb_byte buf[OR1K_INSTLEN];
> > +
> > +  if (target_read_memory (addr, buf, OR1K_INSTLEN)) {
> 
> target_read_code, it uses cache, and helps on performance.

OK, thanks

> > +    memory_error (TARGET_XFER_E_IO, addr);
> > +  }
> > +
> > +  return extract_unsigned_integer (buf, OR1K_INSTLEN, byte_order);
> > +}
> > +
> 
> > +
> > +	  /* Check we got something, and if so skip on.  */
> > +	  if (start_ptr == end_ptr)
> > +	    throw_quit ("bitstring \"%s\" at offset %d has no length field.\n",
> > +			format, i);
> 
> s/throw_quit/error/
> multiple instances of this.

OK

> > +/* Analyze a l.addi instruction in form: l.addi  rD,rA,I.  This is used
> > +   to parse add instructions during various prologue analysis routines.  */
> > +
> 
> Document the argument and return value.

OK

> > +static int
> 
> static bool

OK, I guess more instances of this

> > +or1k_analyse_l_addi (uint32_t inst, unsigned int *rd_ptr,
> > +		     unsigned int *ra_ptr, int *simm_ptr)
> > +{
> > +  /* Instruction fields */
> > +  uint32_t rd, ra, i;
> > +
> > +  if (or1k_analyse_inst (inst, "10 0111 %5b %5b %16b", &rd, &ra, &i))
> > +    {
> > +      /* Found it.  Construct the result fields.  */
> > +      *rd_ptr = (unsigned int) rd;
> > +      *ra_ptr = (unsigned int) ra;
> > +      *simm_ptr = (int) (((i & 0x8000) == 0x8000) ? 0xffff0000 | i : i);
> > +
> > +      return 1; /* Success */
> > +    }
> > +  else
> > +    return 0; /* Failure */
> > +}
> > +
> 
> > +/* Functions defining the architecture.  */
> 
> What is this?

Its just a code section comment. i.e. the previous section was

 /* Support functions for the architecture definition.  */

I would prefer to keep.

> > +
> > +/* Implement the return_value gdbarch method.  */
> > +
> > +static enum return_value_convention
> > +or1k_return_value (struct gdbarch *gdbarch, struct value *functype,
> > +		   struct type *valtype, struct regcache *regcache,
> > +		   gdb_byte *readbuf, const gdb_byte *writebuf)
> > +{
> > +  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
> > +  enum type_code rv_type = TYPE_CODE (valtype);
> > +  unsigned int rv_size = TYPE_LENGTH (valtype);
> > +  int bpw = (gdbarch_tdep (gdbarch))->bytes_per_word;
> > +
> > +  /* Deal with struct/union as addresses.  If an array won't fit in a single
> > +     register it is returned as address.  Anything larger than 2 registers needs
> > +     to also be passed as address (matches gcc default_return_in_memory).  */
> > +  if ((TYPE_CODE_STRUCT == rv_type) || (TYPE_CODE_UNION == rv_type)
> > +      || ((TYPE_CODE_ARRAY == rv_type) && (rv_size > bpw))
> > +      || (rv_size > 2 * bpw))
> 
> If I read the comment and code correctly, register size is
> "bytes_per_word", and bytes_per_address is added in gdbarch_tdep.  Does
> this imply that register size may be different (in bytes) on different
> processors?

It currently will be 4 for 32-bit and the spec doesnt define return
values for 64-bit architectures, but this code does seem to assume that
64-bit architectures would follow the same convention.

> > +    {
> > +      if (readbuf != NULL)
> > +	{
> > +	  ULONGEST tmp;
> > +
> > +	  regcache_cooked_read_unsigned (regcache, OR1K_RV_REGNUM, &tmp);
> > +	  read_memory (tmp, readbuf, rv_size);
> > +	}
> > +      if (writebuf != NULL)
> > +	{
> > +	  ULONGEST tmp;
> > +
> > +	  regcache_cooked_read_unsigned (regcache, OR1K_RV_REGNUM, &tmp);
> > +	  write_memory (tmp, writebuf, rv_size);
> > +	}
> > +
> > +      return RETURN_VALUE_ABI_RETURNS_ADDRESS;
> > +    }
> > +
> > +  if (rv_size <= bpw)
> > +    {
> > +      /* Up to one word scalars are returned in R11.  */
> > +      if (readbuf != NULL)
> > +	{
> > +	  ULONGEST tmp;
> > +
> > +	  regcache_cooked_read_unsigned (regcache, OR1K_RV_REGNUM, &tmp);
> > +	  store_unsigned_integer (readbuf, rv_size, byte_order, tmp);
> > +
> > +	}
> > +      if (writebuf != NULL)
> > +	{
> > +	  gdb_byte buf[4];
> 
> Overflow if bpw is greater than 4?

Good catch, I think we can calloc(1, bpw) and free().

> > +	  memset (buf, 0, sizeof (buf)); /* Zero pad if < bpw bytes.  */
> > +
> > +	  if (BFD_ENDIAN_BIG == byte_order)
> > +	    memcpy (buf + sizeof (buf) - rv_size, writebuf, rv_size);
> > +	  else
> > +	    memcpy (buf, writebuf, rv_size);
> > +
> > +	  regcache_cooked_write (regcache, OR1K_RV_REGNUM, buf);
> > +	}
> > +    }
> > +  else
> > +    {
> > +      /* 2 word scalars are returned in r11/r12 (with the MS word in r11).  */
> 
> 
> > +
> > +/* OR1K always uses a l.trap instruction for breakpoints.  */
> > +
> > +constexpr gdb_byte or1k_break_insn[] = {0x21, 0x00, 0x00, 0x01};
> > +
> > +typedef BP_MANIPULATION (or1k_break_insn) or1k_breakpoint;
> > +
> > +/* Implement the single_step_through_delay gdbarch method.  */
> > +
> > +static int
> > +or1k_single_step_through_delay (struct gdbarch *gdbarch,
> > +				struct frame_info *this_frame)
> > +{
> > +  ULONGEST val;
> > +  CORE_ADDR ppc;
> > +  CORE_ADDR npc;
> > +  CGEN_FIELDS tmp_fields;
> > +  const CGEN_INSN *insn;
> > +  struct regcache *regcache = get_current_regcache ();
> > +  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
> > +
> > +  /* Get and the previous and current instruction addresses.  If they are not
> 
> This line is too long.

OK

> > +
> > +/* Name for or1k general registers.  */
> > +
> > +static const char *const or1k_reg_names[OR1K_NUM_REGS] = {
> > +  /* general purpose registers */
> > +  "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
> > +  "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
> > +  "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
> > +  "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
> > +
> > +  /* previous program counter, next program counter and status register */
> > +  "ppc", "npc", "sr"
> > +};
> > +
> > +/* Implement the register_name gdbarch method.  */
> > +
> > +static const char *
> > +or1k_register_name (struct gdbarch *gdbarch, int regnum)
> > +{
> > +  if (0 <= regnum && regnum < OR1K_NUM_REGS)
> > +    return or1k_reg_names[regnum];
> > +  else
> > +    return NULL;
> > +}
> > +
> 
> Register names can be from target description, so we don't need this
> function.

Right, now that I have added target-desc it not needed.

> > +/* Implement the register_type gdbarch method.  */
> > +
> > +static struct type *
> > +or1k_register_type (struct gdbarch *gdbarch, int regnum)
> > +{
> > +  if ((regnum >= 0) && (regnum < OR1K_NUM_REGS))
> > +    {
> > +      switch (regnum)
> > +	{
> > +	case OR1K_PPC_REGNUM:
> > +	case OR1K_NPC_REGNUM:
> > +	  return builtin_type (gdbarch)->builtin_func_ptr; /* Pointer to code */
> > +
> > +	case OR1K_SP_REGNUM:
> > +	case OR1K_FP_REGNUM:
> > +	  return builtin_type (gdbarch)->builtin_data_ptr; /* Pointer to data */
> > +
> > +	default:
> > +	  return builtin_type (gdbarch)->builtin_uint32; /* Data */
> > +	}
> > +    }
> > +
> > +  internal_error (__FILE__, __LINE__,
> > +		  _("or1k_register_type: illegal register number %d"),
> > +		  regnum);
> > +}
> > +
> 
> Likewise.

Yes

> > +/* Implement the register_reggroup_p gdbarch method.  */
> > +
> > +static int
> > +or1k_register_reggroup_p (struct gdbarch *gdbarch,
> > +			  int regnum, struct reggroup *group)
> > +{
> > +  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
> > +
> > +  /* All register group.  */
> > +  if (group == all_reggroup)
> > +    return ((regnum >= 0)
> > +	    && (regnum < OR1K_NUM_REGS)
> > +	    && (or1k_register_name (gdbarch, regnum)[0] != '\0'));
> > +
> > +  /* For now everything except the PC.  */
> > +  if (group == general_reggroup)
> > +    return ((regnum >= OR1K_ZERO_REGNUM)
> > +	    && (regnum < OR1K_MAX_GPR_REGS)
> > +	    && (regnum != OR1K_PPC_REGNUM) && (regnum != OR1K_NPC_REGNUM));
> > +
> > +  if (group == float_reggroup)
> > +    return 0; /* No float regs */
> > +
> > +  if (group == vector_reggroup)
> > +    return 0; /* No vector regs */
> > +
> > +  /* For any that are not handled above.  */
> > +  return default_register_reggroup_p (gdbarch, regnum, group);
> > +}
> > +
> 
> Likewise.

Yes

> > +static int
> > +or1k_is_arg_reg (unsigned int regnum)
> > +{
> > +  return (OR1K_FIRST_ARG_REGNUM <= regnum)
> > +    && (regnum <= OR1K_LAST_ARG_REGNUM);
> > +}
> > +
> > +static int
> > +or1k_is_callee_saved_reg (unsigned int regnum)
> > +{
> > +  return (OR1K_FIRST_SAVED_REGNUM <= regnum) && (0 == regnum % 2);
> > +}
> > +
> > +/* Implement the skip_prologue gdbarch method.  */
> > +
> > +static CORE_ADDR
> > +or1k_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
> > +{
> > +  CORE_ADDR start_pc;
> > +  CORE_ADDR addr;
> > +  uint32_t inst;
> > +
> > +  unsigned int ra, rb, rd; /* for instruction analysis */
> > +  int simm;
> > +
> > +  int frame_size = 0;
> > +
> > +  /* Try using SAL first if we have symbolic information available.  This only
> > +     works for DWARF 2, not STABS.  */
> > +
> > +  if (find_pc_partial_function (pc, NULL, &start_pc, NULL))
> > +    {
> > +      CORE_ADDR prologue_end = skip_prologue_using_sal (gdbarch, pc);
> > +
> > +      if (0 != prologue_end)
> > +	{
> > +	  struct symtab_and_line prologue_sal = find_pc_line (start_pc, 0);
> > +	  struct compunit_symtab *compunit
> > +	    = SYMTAB_COMPUNIT (prologue_sal.symtab);
> > +	  const char *debug_format = COMPUNIT_DEBUGFORMAT (compunit);
> > +
> > +	  if ((NULL != debug_format)
> > +	      && (strlen ("dwarf") <= strlen (debug_format))
> > +	      && (0 == strncasecmp ("dwarf", debug_format, strlen ("dwarf"))))
> > +	    return (prologue_end > pc) ? prologue_end : pc;
> > +	}
> > +    }
> > +
> > +  /* Look to see if we can find any of the standard prologue sequence.  All
> > +     quite difficult, since any or all of it may be missing.  So this is just a
> 
> This line is too long.

OK

> > +     best guess!  */
> > +
> > +  addr = pc; /* Where we have got to */
> > +  inst = or1k_fetch_instruction (gdbarch, addr);
> > +
> > +  /* Look for the new stack pointer being set up.  */
> > +  if (or1k_analyse_l_addi (inst, &rd, &ra, &simm)
> > +      && (OR1K_SP_REGNUM == rd) && (OR1K_SP_REGNUM == ra)
> > +      && (simm < 0) && (0 == (simm % 4)))
> > +    {
> > +      frame_size = -simm;
> > +      addr += OR1K_INSTLEN;
> > +      inst = or1k_fetch_instruction (gdbarch, addr);
> > +    }
> > +
> > +  /* Look for the frame pointer being manipulated.  */
> > +  if (or1k_analyse_l_sw (inst, &simm, &ra, &rb)
> > +      && (OR1K_SP_REGNUM == ra) && (OR1K_FP_REGNUM == rb)
> > +      && (simm >= 0) && (0 == (simm % 4)))
> > +    {
> > +      addr += OR1K_INSTLEN;
> > +      inst = or1k_fetch_instruction (gdbarch, addr);
> > +
> > +      gdb_assert (or1k_analyse_l_addi (inst, &rd, &ra, &simm)
> > +		  && (OR1K_FP_REGNUM == rd) && (OR1K_SP_REGNUM == ra)
> > +		  && (simm == frame_size));
> > +
> > +      addr += OR1K_INSTLEN;
> > +      inst = or1k_fetch_instruction (gdbarch, addr);
> > +    }
> > +
> > +  /* Look for the link register being saved.  */
> > +  if (or1k_analyse_l_sw (inst, &simm, &ra, &rb)
> > +      && (OR1K_SP_REGNUM == ra) && (OR1K_LR_REGNUM == rb)
> > +      && (simm >= 0) && (0 == (simm % 4)))
> > +    {
> > +      addr += OR1K_INSTLEN;
> > +      inst = or1k_fetch_instruction (gdbarch, addr);
> > +    }
> > +
> > +  /* Look for arguments or callee-saved register being saved.  The register
> > +     must be one of the arguments (r3-r8) or the 10 callee saved registers
> > +     (r10, r12, r14, r16, r18, r20, r22, r24, r26, r28, r30).  The base
> > +     register must be the FP (for the args) or the SP (for the callee_saved
> > +     registers).  */
> > +  while (1)
> 
> Can you give an upper-bound of the loop?  The endless loop looks scary
> to me.

OK, ill look for another way to do it. If not I'll revert with more
comments.

> > +    {
> > +      if (or1k_analyse_l_sw (inst, &simm, &ra, &rb)
> > +	  && (((OR1K_FP_REGNUM == ra) && or1k_is_arg_reg (rb))
> > +	      || ((OR1K_SP_REGNUM == ra) && or1k_is_callee_saved_reg (rb)))
> > +	  && (0 == (simm % 4)))
> > +	{
> > +	  addr += OR1K_INSTLEN;
> > +	  inst = or1k_fetch_instruction (gdbarch, addr);
> > +	}
> > +      else
> > +	{
> > +	  /* Nothing else to look for.  We have found the end of the
> > +	     prologue.  */
> > +	  return addr;
> 
> break the loop and "return addr" at the end of this function.

Right, thats more clean.

> > +
> > +/* Implement the push_dummy_call gdbarch method.  */
> > +
> > +static CORE_ADDR
> > +or1k_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
> > +		      struct regcache *regcache, CORE_ADDR bp_addr,
> > +		      int nargs, struct value **args, CORE_ADDR sp,
> > +		      int struct_return, CORE_ADDR struct_addr)
> > +{
> > +
> > +  int argreg;
> > +  int argnum;
> > +  int first_stack_arg;
> > +  int stack_offset = 0;
> > +  int heap_offset = 0;
> > +  CORE_ADDR heap_sp = sp - 128;
> > +  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
> > +  int bpa = (gdbarch_tdep (gdbarch))->bytes_per_address;
> > +  int bpw = (gdbarch_tdep (gdbarch))->bytes_per_word;
> > +  struct type *func_type = value_type (function);
> > +
> > +  /* Return address */
> > +  regcache_cooked_write_unsigned (regcache, OR1K_LR_REGNUM, bp_addr);
> > +
> > +  /* Register for the next argument.  */
> > +  argreg = OR1K_FIRST_ARG_REGNUM;
> > +
> > +  /* Location for a returned structure.  This is passed as a silent first
> > +     argument.  */
> > +  if (struct_return)
> > +    {
> > +      regcache_cooked_write_unsigned (regcache, OR1K_FIRST_ARG_REGNUM,
> > +				      struct_addr);
> > +      argreg++;
> > +    }
> > +
> > +  /* Put as many args as possible in registers.  */
> > +  for (argnum = 0; argnum < nargs; argnum++)
> > +    {
> > +      const gdb_byte *val;
> > +      gdb_byte valbuf[sizeof (ULONGEST)];
> > +
> > +      struct value *arg = args[argnum];
> > +      struct type *arg_type = check_typedef (value_type (arg));
> > +      int len = arg_type->length;
> > +      enum type_code typecode = arg_type->main_type->code;
> 
> typecode = TYPE_CODE (arg_type);

OK, thanks

> > +
> > +      if (TYPE_VARARGS (func_type) && argnum >= TYPE_NFIELDS (func_type))
> > +	break; /* end or regular args, varargs go to stack.  */
> > +
> > +      /* Extract the value, either a reference or the data.  */
> > +      if ((TYPE_CODE_STRUCT == typecode) || (TYPE_CODE_UNION == typecode)
> > +	  || (len > bpw * 2))
> > +	{
> > +	  CORE_ADDR valaddr = value_address (arg);
> > +
> > +	  /* If the arg is fabricated (i.e. 3*i, instead of i) valaddr is
> > +	     undefined.  */
> > +	  if (valaddr == 0)
> > +	    {
> > +	      /* The argument needs to be copied into the target space.  Since
> > +	         the bottom of the stack is reserved for function arguments
> > +	         we store this at the these at the top growing down.  */
> > +	      heap_offset += align_up (len, bpw);
> > +	      valaddr = heap_sp + heap_offset;
> > +
> > +	      write_memory (valaddr, value_contents (arg), len);
> > +	    }
> > +
> > +	  /* The ABI passes all structures by reference, so get its address.  */
> > +	  store_unsigned_integer (valbuf, bpa, byte_order, valaddr);
> > +	  len = bpa;
> > +	  val = valbuf;
> > +	}
> > +      else
> > +	{
> > +	  /* Everything else, we just get the value.  */
> > +	  val = value_contents (arg);
> > +	}
> > +
> > +      /* Stick the value in a register.  */
> > +      if (len > bpw)
> > +	{
> > +	  /* Big scalars use two registers, but need NOT be pair aligned.  */
> > +
> > +	  if (argreg <= (OR1K_LAST_ARG_REGNUM - 1))
> > +	    {
> > +	      ULONGEST regval =	extract_unsigned_integer (val, len, byte_order);
> > +
> > +	      unsigned int bits_per_word = bpw * 8;
> > +	      ULONGEST mask = (((ULONGEST) 1) << bits_per_word) - 1;
> > +	      ULONGEST lo = regval & mask;
> > +	      ULONGEST hi = regval >> bits_per_word;
> > +
> > +	      regcache_cooked_write_unsigned (regcache, argreg, hi);
> > +	      regcache_cooked_write_unsigned (regcache, argreg + 1, lo);
> > +	      argreg += 2;
> > +	    }
> > +	  else
> > +	    {
> > +	      /* Run out of regs */
> > +	      break;
> > +	    }
> > +	}
> > +      else if (argreg <= OR1K_LAST_ARG_REGNUM)
> > +	{
> > +	  /* Smaller scalars fit in a single register.  */
> > +	  regcache_cooked_write_unsigned
> > +	    (regcache, argreg, extract_unsigned_integer (val, len, byte_order));
> > +	  argreg++;
> > +	}
> > +      else
> > +	{
> > +	  /* Ran out of regs.  */
> > +	  break;
> > +	}
> > +    }
> > +
> > +  first_stack_arg = argnum;
> > +
> > +  /* If we get here with argnum < nargs, then arguments remain to be placed on
> > +     the stack.  This is tricky, since they must be pushed in reverse order and
> 
> These two lines are too long.

OK.

> > +     the stack in the end must be aligned.  The only solution is to do it in
> > +     two stages, the first to compute the stack size, the second to save the
> > +     args.  */
> > +
> > +  for (argnum = first_stack_arg; argnum < nargs; argnum++)
> > +    {
> > +      struct value *arg = args[argnum];
> > +      struct type *arg_type = check_typedef (value_type (arg));
> > +      int len = arg_type->length;
> 
> TYPE_LENGTH (arg_type);

Right, thanks.

> > +      enum type_code typecode = arg_type->main_type->code;
> > +
> 
> TYPE_CODE (arg_type);

Right, thanks

> > +
> > +
> > +/* Support functions for frame handling.  */
> > +
> > +/* Initialize a prologue cache
> > +
> > +   We build a cache, saying where registers of the PREV frame can be found
> > +   from the data so far set up in this THIS.
> > +
> > +   We also compute a unique ID for this frame, based on the function start
> > +   address and the stack pointer (as it will be, even if it has yet to be
> > +   computed.
> > +
> > +   STACK FORMAT
> > +   ============
> > +
> > +   The OR1K has a falling stack frame and a simple prolog.  The Stack pointer
> > +   is R1 and the frame pointer R2.  The frame base is therefore the address
> > +   held in R2 and the stack pointer (R1) is the frame base of the NEXT frame.
> > +
> > +   l.addi  r1,r1,-frame_size	# SP now points to end of new stack frame
> > +
> > +   The stack pointer may not be set up in a frameless function (e.g. a simple
> > +   leaf function).
> > +
> > +   l.sw    fp_loc(r1),r2        # old FP saved in new stack frame
> > +   l.addi  r2,r1,frame_size     # FP now points to base of new stack frame
> > +
> > +   The frame pointer is not necessarily saved right at the end of the stack
> > +   frame - OR1K saves enough space for any args to called functions right at
> > +   the end (this is a difference from the Architecture Manual).
> > +
> > +   l.sw    lr_loc(r1),r9        # Link (return) address
> > +
> > +   The link register is usally saved at fp_loc - 4.  It may not be saved at all
> > +   in a leaf function.
> > +
> > +   l.sw    reg_loc(r1),ry       # Save any callee saved regs
> > +
> > +   The offsets x for the callee saved registers generally (always?) rise in
> > +   increments of 4, starting at fp_loc + 4.  If the frame pointer is omitted
> > +   (an option to GCC), then it may not be saved at all.  There may be no callee
> > +   saved registers.
> > +
> > +   So in summary none of this may be present.  However what is present seems
> > +   always to follow this fixed order, and occur before any substantive code
> > +   (it is possible for GCC to have more flexible scheduling of the prologue,
> > +   but this does not seem to occur for OR1K).
> > +
> > +   ANALYSIS
> > +   ========
> > +
> > +   This prolog is used, even for -O3 with GCC.
> > +
> > +   All this analysis must allow for the possibility that the PC is in the
> > +   middle of the prologue.  Data in the cache should only be set up insofar as
> > +   it has been computed.
> > +
> > +   HOWEVER.  The frame_id must be created with the SP *as it will be* at the
> > +   end of the Prologue.  Otherwise a recursive call, checking the frame with
> > +   the PC at the start address will end up with the same frame_id as the
> > +   caller.
> > +
> > +   A suite of "helper" routines are used, allowing reuse for
> > +   or1k_skip_prologue().
> > +
> > +   Reportedly, this is only valid for frames less than 0x7fff in size.  */
> > +
> > +static struct trad_frame_cache *
> > +or1k_frame_cache (struct frame_info *this_frame, void **prologue_cache)
> > +{
> > +  struct gdbarch *gdbarch;
> > +  struct trad_frame_cache *info;
> > +
> > +  CORE_ADDR this_pc;
> > +  CORE_ADDR this_sp;
> > +  CORE_ADDR this_sp_for_id;
> > +  int frame_size = 0;
> > +
> > +  CORE_ADDR start_addr;
> > +  CORE_ADDR end_addr;
> > +
> > +  if (frame_debug)
> > +    fprintf_unfiltered (gdb_stdlog,
> > +			"or1k_frame_cache, prologue_cache = 0x%p\n",
> > +			*prologue_cache);
> 
> Can you add a new debug flag, like or1k_debug, to control this?  Each
> backend in GDB (amd64-windows-tdep.c) use its own debug flag to control
> the output related to frame unwinding.

OK, adding with add_setshow_boolean_cmd().

> > +  /* Get a new prologue cache and populate it with default values.  */
> > +  info = trad_frame_cache_zalloc (this_frame);
> > +  *prologue_cache = info;
> > +
> > +  /* Find the start address of THIS function (which is a NORMAL frame, even if
> > +     the NEXT frame is the sentinel frame) and the end of its prologue.  */
> 
> Don't need to capitalize THIS, NORMAL, and NEXT.

OK, I think this was done for emphasis, but I guess its not needed.

> > +
> > +  /* The default frame base of THIS frame (for ID purposes only - frame base
> > +     is an overloaded term) is its stack pointer.  For now we use the value of
> > +     the SP register in THIS frame.  However if the PC is in the prologue of
> > +     THIS frame, before the SP has been set up, then the value will actually
> > +     be that of the PREV frame, and we'll need to adjust it later.  */
> > +  trad_frame_set_this_base (info, this_sp);
> > +  this_sp_for_id = this_sp;
> > +
> > +  /* The default is to find the PC of the PREVIOUS frame in the link register
> > +     of this frame.  This may be changed if we find the link register was saved
> > +     on the stack.  */
> > +  trad_frame_set_reg_realreg (info, OR1K_NPC_REGNUM, OR1K_LR_REGNUM);
> > +
> > +  /* We should only examine code that is in the prologue.  This is all code up
> > +     to (but not including) end_addr.  We should only populate the cache while
> > +     the address is up to (but not including) the PC or end_addr, whichever is
> > +     first.  */
> > +  gdbarch = get_frame_arch (this_frame);
> > +  end_addr = or1k_skip_prologue (gdbarch, start_addr);
> > +
> > +  /* All the following analysis only occurs if we are in the prologue and have
> > +     executed the code.  Check we have a sane prologue size, and if zero we
> > +     are frameless and can give up here.  */
> > +  if (end_addr < start_addr)
> 
> How can it be?

Looking at or1k_skip_prologue(), it doesnt look like its possible.

I guess this is just a sanity check.  I can remove if you agree it looks
impossible.

> > +    throw_quit ("end addr 0x%08x is less than start addr 0x%08x\n",
> > +		(unsigned int) end_addr, (unsigned int) start_addr);
> 
> s/throw_quit/error/

OK

> > +
> > +/* Data structures for the normal prologue-analysis-based unwinder.  */
> > +
> > +static const struct frame_unwind or1k_frame_unwind = {
> > +  .type = NORMAL_FRAME,
> > +  .stop_reason = default_frame_unwind_stop_reason,
> > +  .this_id = or1k_frame_this_id,
> > +  .prev_register = or1k_frame_prev_register,
> > +  .unwind_data = NULL,
> > +  .sniffer = default_frame_sniffer,
> > +  .dealloc_cache = NULL,
> > +  .prev_arch = NULL
> > +};
> 
> Write the code this way,
> 
> static const struct frame_unwind or1k_frame_unwind =
> {
>   NORMAL_FRAME,
>   default_frame_unwind_stop_reason,
>   or1k_frame_this_id,
>   or1k_frame_prev_register,
>   NULL,
>   default_frame_sniffer,
>   NULL,
> };

OK, I prefer with the named fields, because its self documenting, but
what you are showing is consistent with other *-tdep.c definitions.

I'll change it.

> > +
> > +/* Architecture initialization for OpenRISC 1000.  */
> > +
> > +static struct gdbarch *
> > +or1k_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
> > +{
> ...
> > +  /* Check any target description for validity.  */
> > +  if (tdesc_has_registers (info.target_desc))
> > +    {
> > +      const struct tdesc_feature *feature;
> > +      int valid_p;
> > +
> > +      feature = tdesc_find_feature (info.target_desc, "org.gnu.gdb.or1k.group0");
> 
> This line is too long.  In patch 2/4, you defined 11 features, group0 -
> group 10, but you only find feature group0.  Is group0 a required
> feature?

I have upated this already.  I only define group0 as a required feature
and documented it as well.  The other I removed and leave up to targets
like OpenOCD to define.

> > +      if (feature == NULL)
> > +        return NULL;
> > +
> > +      tdesc_data = tdesc_data_alloc ();
> > +
> > +      valid_p = 1;
> > +
> > +      for (i = 0; i < OR1K_NUM_REGS; i++)
> > +        valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
> > +                                            or1k_reg_names[i]);
> > +
> > +      if (!valid_p)
> > +        {
> > +          tdesc_data_cleanup (tdesc_data);
> > +          return NULL;
> > +        }
> > +    }
> > +
> > +  if (tdesc_data)
> 
> if (tdesc_data != NULL)

OK

> > +    {
> > +      tdesc_use_registers (gdbarch, info.target_desc, tdesc_data);
> > +
> > +      /* Target descriptions may extend into the following groups.  */
> > +      reggroup_add (gdbarch, general_reggroup);
> > +      reggroup_add (gdbarch, system_reggroup);
> > +      reggroup_add (gdbarch, float_reggroup);
> > +      reggroup_add (gdbarch, vector_reggroup);
> > +      reggroup_add (gdbarch, reggroup_new ("immu", USER_REGGROUP));
> > +      reggroup_add (gdbarch, reggroup_new ("dmmu", USER_REGGROUP));
> > +      reggroup_add (gdbarch, reggroup_new ("icache", USER_REGGROUP));
> > +      reggroup_add (gdbarch, reggroup_new ("dcache", USER_REGGROUP));
> > +      reggroup_add (gdbarch, reggroup_new ("pic", USER_REGGROUP));
> > +      reggroup_add (gdbarch, reggroup_new ("timer", USER_REGGROUP));
> > +      reggroup_add (gdbarch, reggroup_new ("power", USER_REGGROUP));
> > +      reggroup_add (gdbarch, reggroup_new ("perf", USER_REGGROUP));
> > +      reggroup_add (gdbarch, reggroup_new ("mac", USER_REGGROUP));
> > +      reggroup_add (gdbarch, reggroup_new ("debug", USER_REGGROUP));
> > +      reggroup_add (gdbarch, all_reggroup);
> > +      reggroup_add (gdbarch, save_reggroup);
> > +      reggroup_add (gdbarch, restore_reggroup);
> > +    }
> > +
> > +  return gdbarch;
> > +}
> > +
> 
> > +
> > +extern initialize_file_ftype _initialize_or1k_tdep; /* -Wmissing-prototypes */
> > +
> > +void
> > +_initialize_or1k_tdep (void)
> > +{
> > +  /* Register this architecture.  */
> > +  gdbarch_register (bfd_arch_or1k, or1k_gdbarch_init, or1k_dump_tdep);
> > +
> > +  /* Tell remote stub that we support XML target description.  */
> > +  register_remote_support_xml ("or1k");
> 
> Can't remote stub think GDB support xml target description already?

I'll try to remove and see.

> > +}
> > diff --git a/gdb/or1k-tdep.h b/gdb/or1k-tdep.h
> > new file mode 100644
> > index 0000000..edcad88
> > --- /dev/null
> > +++ b/gdb/or1k-tdep.h
> > @@ -0,0 +1,56 @@
> > +/* Definitions to target GDB to OpenRISC 1000 32-bit targets.
> > +   Copyright (C) 2008-2017 Free Software Foundation, Inc.
> > +
> > +   This file is part of GDB.
> > +
> > +   This program is free software; you can redistribute it and/or modify it
> > +   under the terms of the GNU General Public License as published by the Free
> > +   Software Foundation; either version 3 of the License, or (at your option)
> > +   any later version.
> > +
> > +   This program is distributed in the hope that it will be useful, but WITHOUT
> > +   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
> > +   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
> > +   more details.
> > +
> > +   You should have received a copy of the GNU General Public License along
> > +   With this program.  If not, see <http://www.gnu.org/licenses/>.  */
> > +
> > +
> > +#ifndef OR1K_TDEP__H
> > +#define OR1K_TDEP__H
> > +
> > +#ifndef TARGET_OR1K
> > +#define TARGET_OR1K
> > +#endif
> > +
> > +#include "opcodes/or1k-desc.h"
> > +#include "opcodes/or1k-opc.h"
> > +
> > +/* General Purpose Registers */
> > +#define OR1K_ZERO_REGNUM          0
> > +#define OR1K_SP_REGNUM            1
> > +#define OR1K_FP_REGNUM            2
> > +#define OR1K_FIRST_ARG_REGNUM     3
> > +#define OR1K_LAST_ARG_REGNUM      8
> > +#define OR1K_LR_REGNUM            9
> > +#define OR1K_FIRST_SAVED_REGNUM  10
> > +#define OR1K_RV_REGNUM           11
> > +#define OR1K_PPC_REGNUM          (OR1K_MAX_GPR_REGS + 0)
> > +#define OR1K_NPC_REGNUM          (OR1K_MAX_GPR_REGS + 1)
> > +#define OR1K_SR_REGNUM           (OR1K_MAX_GPR_REGS + 2)
> 
> A general comments on these macros, if they are only used in
> or1k-tdep.c, why don't you move these macros into or1k-tdep.c?

It seems common that other archs put their macros like this in the
*tdep.h file.  I see in nio2 and alpha.

I could change but I rather not if its ok.

> > +
> > +/* Properties of the architecture. GDB mapping of registers is all the GPRs
> > +   and SPRs followed by the PPC, NPC and SR at the end. Red zone is the area
> > +   past the end of the stack reserved for exception handlers etc.  */
> > +
> > +#define OR1K_MAX_GPR_REGS            32
> > +#define OR1K_NUM_PSEUDO_REGS         0
> > +#define OR1K_NUM_REGS               (OR1K_MAX_GPR_REGS + 3)
> > +#define OR1K_STACK_ALIGN             4
> > +#define OR1K_INSTLEN                 4
> > +#define OR1K_INSTBITLEN             (OR1K_INSTLEN * 8)
> > +#define OR1K_NUM_TAP_RECORDS         8
> > +#define OR1K_FRAME_RED_ZONE_SIZE     2536
> > +
> > +#endif /* OR1K_TDEP__H */


Thanks for all the comments.  As mentioned before I will fix up and
send.

> -- 
> Yao (齐尧)
  

Patch

diff --git a/gdb/configure.tgt b/gdb/configure.tgt
index cb909e7..5a722f2 100644
--- a/gdb/configure.tgt
+++ b/gdb/configure.tgt
@@ -426,6 +426,12 @@  nios2*-*-*)
 	gdb_target_obs="nios2-tdep.o"
 	;;
 
+or1k-*-* | or1knd-*-*)
+	# Target: OpenCores OpenRISC 1000 32-bit implementation bare metal
+	gdb_target_obs="or1k-tdep.o"
+	gdb_sim=../sim/or1k/libsim.a
+	;;
+
 powerpc*-*-freebsd*)
 	# Target: FreeBSD/powerpc
 	gdb_target_obs="rs6000-tdep.o ppc-sysv-tdep.o ppc64-tdep.o \
diff --git a/gdb/doc/gdb.texinfo b/gdb/doc/gdb.texinfo
index 5cf0f97..0ab2083 100644
--- a/gdb/doc/gdb.texinfo
+++ b/gdb/doc/gdb.texinfo
@@ -546,6 +546,11 @@  was developed by SRI International and the University of Cambridge
 Computer Laboratory under DARPA/AFRL contract FA8750-10-C-0237
 ("CTSRD"), as part of the DARPA CRASH research programme.
 
+The original port to the OpenRISC 1000 is believed to be due to
+Alessandro Forin and Per Bothner.  More recent ports have been the work
+of Jeremy Bennett, Franck Jullien, Stefan Wallentowitz and
+Stafford Horne.
+
 @node Sample Session
 @chapter A Sample @value{GDBN} Session
 
@@ -22077,6 +22082,7 @@  acceptable commands.
 * M68K::                        Motorola M68K
 * MicroBlaze::			Xilinx MicroBlaze
 * MIPS Embedded::               MIPS Embedded
+* OpenRISC 1000::               OpenRISC 1000 (or1k)
 * PowerPC Embedded::            PowerPC Embedded
 * AVR::                         Atmel AVR
 * CRIS::                        CRIS
@@ -22283,6 +22289,70 @@  As usual, you can inquire about the @code{mipsfpu} variable with
 @samp{show mipsfpu}.
 @end table
 
+@node OpenRISC 1000
+@subsection OpenRISC 1000
+@cindex OpenRISC 1000
+
+Previous development versions of @value{GDBN} supported remote connection
+via a proprietary JTAG protocol using the @samp{target jtag} command.
+Support for this has now been dropped.
+
+Also, previous verions had support for a @samp{spr} command to access
+OpenRISC's numberous special purpose registers.  These are now available
+via the normal @samp{info registers} command.
+
+@table @code
+
+@kindex target remote
+@item target remote
+
+Connects to remote JTAG server.
+This is now the only way to connect to a remote OpenRISC 1000
+target.  This is supported by @dfn{Or1ksim}, the OpenRISC 1000
+architectural simulator as well as Verilator and Icarus Verilog
+simulators.  @dfn{Remote serial protocol} servers, such as OpenOCD, are also
+available to drive various hardware implementations via JTAG.
+
+Example: @code{target remote :51000}
+
+@kindex target sim
+@item target sim
+
+Runs the builtin CPU simulator which can run very basic
+programs but does not support most hardware functions like MMU.
+For more complex use cases the user is advised to run an external
+target, and connect using @samp{target remote}.
+
+Example: @code{target sim}
+
+@end table
+
+There are some known problems with the current implementation
+@cindex OpenRISC 1000 known problems
+
+@enumerate
+
+@item
+@cindex OpenRISC 1000 known problems, hardware breakpoints and watchpoints
+Some OpenRISC 1000 targets support hardware breakpoints and watchpoints.
+Consult the target documentation for details.  @value{GDBN} is not
+perfect in handling of watchpoints.  It is possible to allocate hardware
+watchpoints and not discover until running that sufficient watchpoints
+are not available.  It is also possible that GDB will report watchpoints
+being hit spuriously.  This can be down to the assembly code having
+additional memory accesses that are not obviously reflected in the
+source code.
+
+@item
+@cindex OpenRISC 1000 known problems, architectural compatibility
+The OpenRISC 1000 architecture has evolved since the first port for
+@value{GDBN}.  In particular the structure of the Unit Present register has
+changed and the CPU Configuration register has been added.  The port of
+@value{GDBN} version @value{GDBVN} uses the @emph{current}
+specification of the OpenRISC 1000.
+
+@end enumerate
+
 @node PowerPC Embedded
 @subsection PowerPC Embedded
 
diff --git a/gdb/or1k-tdep.c b/gdb/or1k-tdep.c
new file mode 100644
index 0000000..1f6843c
--- /dev/null
+++ b/gdb/or1k-tdep.c
@@ -0,0 +1,1329 @@ 
+/* Target-dependent code for the 32-bit OpenRISC 1000, for the GDB.
+   Copyright (C) 2008-2017 Free Software Foundation, Inc.
+
+   This file is part of GDB.
+
+   This program is free software; you can redistribute it and/or modify
+   it under the terms of the GNU General Public License as published by
+   the Free Software Foundation; either version 3 of the License, or
+   (at your option) any later version.
+
+   This program is distributed in the hope that it will be useful,
+   but WITHOUT ANY WARRANTY; without even the implied warranty of
+   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+   GNU General Public License for more details.
+
+   You should have received a copy of the GNU General Public License
+   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
+
+#include "defs.h"
+#include "frame.h"
+#include "inferior.h"
+#include "symtab.h"
+#include "value.h"
+#include "gdbcmd.h"
+#include "language.h"
+#include "gdbcore.h"
+#include "symfile.h"
+#include "objfiles.h"
+#include "gdbtypes.h"
+#include "target.h"
+#include "regcache.h"
+#include "safe-ctype.h"
+#include "block.h"
+#include "reggroups.h"
+#include "arch-utils.h"
+#include "frame.h"
+#include "frame-unwind.h"
+#include "frame-base.h"
+#include "dwarf2-frame.h"
+#include "trad-frame.h"
+#include "regset.h"
+#include "remote.h"
+#include "target-descriptions.h"
+#include <inttypes.h>
+#include "dis-asm.h"
+
+/* OpenRISC specific includes.  */
+#include "or1k-tdep.h"
+
+
+/* The target-dependent structure for gdbarch.  */
+
+struct gdbarch_tdep
+{
+  int bytes_per_word;
+  int bytes_per_address;
+  CGEN_CPU_DESC gdb_cgen_cpu_desc;
+};
+
+/* Support functions for the architecture definition.  */
+
+/* Get an instruction from memory.  */
+
+static ULONGEST
+or1k_fetch_instruction (struct gdbarch *gdbarch, CORE_ADDR addr)
+{
+  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
+  gdb_byte buf[OR1K_INSTLEN];
+
+  if (target_read_memory (addr, buf, OR1K_INSTLEN)) {
+    memory_error (TARGET_XFER_E_IO, addr);
+  }
+
+  return extract_unsigned_integer (buf, OR1K_INSTLEN, byte_order);
+}
+
+/* Generic function to read bits from an instruction.  */
+
+static int
+or1k_analyse_inst (uint32_t inst, const char *format, ...)
+{
+  /* Break out each field in turn, validating as we go.  */
+  va_list ap;
+  int i;
+  int iptr = 0; /* Instruction pointer */
+
+  va_start (ap, format);
+
+  for (i = 0; 0 != format[i];)
+    {
+      const char *start_ptr;
+      char *end_ptr;
+
+      uint32_t bits; /* Bit substring of interest */
+      uint32_t width; /* Substring width */
+      uint32_t *arg_ptr;
+
+      switch (format[i])
+	{
+	case ' ':
+	  i++;
+	  break; /* Formatting: ignored */
+
+	case '0':
+	case '1': /* Constant bit field */
+	  bits = (inst >> (OR1K_INSTBITLEN - iptr - 1)) & 0x1;
+
+	  if ((format[i] - '0') != bits)
+	    return 0;
+
+	  iptr++;
+	  i++;
+	  break;
+
+	case '%': /* Bit field */
+	  i++;
+	  start_ptr = &(format[i]);
+	  width = strtoul (start_ptr, &end_ptr, 10);
+
+	  /* Check we got something, and if so skip on.  */
+	  if (start_ptr == end_ptr)
+	    throw_quit ("bitstring \"%s\" at offset %d has no length field.\n",
+			format, i);
+
+	  i += end_ptr - start_ptr;
+
+	  /* Look for and skip the terminating 'b'.  If it's not there, we
+	     still give a fatal error, because these are fixed strings that
+	     just should not be wrong.  */
+	  if ('b' != format[i++])
+	    throw_quit ("bitstring \"%s\" at offset %d has no terminating 'b'.\n",
+			format, i);
+
+	  /* Break out the field.  There is a special case with a bit width of
+	     32.  */
+	  if (32 == width)
+	    bits = inst;
+	  else
+	    bits =
+	      (inst >> (OR1K_INSTBITLEN - iptr - width)) & ((1 << width) - 1);
+
+	  arg_ptr = va_arg (ap, uint32_t *);
+	  *arg_ptr = bits;
+	  iptr += width;
+	  break;
+
+	default:
+	  throw_quit ("invalid character in bitstring \"%s\" at offset %d.\n",
+		      format, i);
+	  break;
+	}
+    }
+
+  /* Is the length OK?  */
+  gdb_assert (OR1K_INSTBITLEN == iptr);
+
+  return 1; /* Success */
+}
+
+/* Analyze a l.addi instruction in form: l.addi  rD,rA,I.  This is used
+   to parse add instructions during various prologue analysis routines.  */
+
+static int
+or1k_analyse_l_addi (uint32_t inst, unsigned int *rd_ptr,
+		     unsigned int *ra_ptr, int *simm_ptr)
+{
+  /* Instruction fields */
+  uint32_t rd, ra, i;
+
+  if (or1k_analyse_inst (inst, "10 0111 %5b %5b %16b", &rd, &ra, &i))
+    {
+      /* Found it.  Construct the result fields.  */
+      *rd_ptr = (unsigned int) rd;
+      *ra_ptr = (unsigned int) ra;
+      *simm_ptr = (int) (((i & 0x8000) == 0x8000) ? 0xffff0000 | i : i);
+
+      return 1; /* Success */
+    }
+  else
+    return 0; /* Failure */
+}
+
+/* Analyze a l.sw instruction in form: l.sw  I(rA),rB.  This is used to
+   to parse store instructions during various prologue analysis routines.  */
+
+static int
+or1k_analyse_l_sw (uint32_t inst, int *simm_ptr, unsigned int *ra_ptr,
+		   unsigned int *rb_ptr)
+{
+  /* Instruction fields */
+  uint32_t ihi, ilo, ra, rb;
+
+  if (or1k_analyse_inst (inst, "11 0101 %5b %5b %5b %11b", &ihi, &ra, &rb,
+			 &ilo))
+
+    {
+      /* Found it.  Construct the result fields.  */
+      *simm_ptr = (int) ((ihi << 11) | ilo);
+      *simm_ptr |= ((ihi & 0x10) == 0x10) ? 0xffff0000 : 0;
+
+      *ra_ptr = (unsigned int) ra;
+      *rb_ptr = (unsigned int) rb;
+
+      return 1; /* Success */
+    }
+  else
+    return 0; /* Failure */
+}
+
+
+/* Functions defining the architecture.  */
+
+/* Implement the return_value gdbarch method.  */
+
+static enum return_value_convention
+or1k_return_value (struct gdbarch *gdbarch, struct value *functype,
+		   struct type *valtype, struct regcache *regcache,
+		   gdb_byte *readbuf, const gdb_byte *writebuf)
+{
+  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
+  enum type_code rv_type = TYPE_CODE (valtype);
+  unsigned int rv_size = TYPE_LENGTH (valtype);
+  int bpw = (gdbarch_tdep (gdbarch))->bytes_per_word;
+
+  /* Deal with struct/union as addresses.  If an array won't fit in a single
+     register it is returned as address.  Anything larger than 2 registers needs
+     to also be passed as address (matches gcc default_return_in_memory).  */
+  if ((TYPE_CODE_STRUCT == rv_type) || (TYPE_CODE_UNION == rv_type)
+      || ((TYPE_CODE_ARRAY == rv_type) && (rv_size > bpw))
+      || (rv_size > 2 * bpw))
+    {
+      if (readbuf != NULL)
+	{
+	  ULONGEST tmp;
+
+	  regcache_cooked_read_unsigned (regcache, OR1K_RV_REGNUM, &tmp);
+	  read_memory (tmp, readbuf, rv_size);
+	}
+      if (writebuf != NULL)
+	{
+	  ULONGEST tmp;
+
+	  regcache_cooked_read_unsigned (regcache, OR1K_RV_REGNUM, &tmp);
+	  write_memory (tmp, writebuf, rv_size);
+	}
+
+      return RETURN_VALUE_ABI_RETURNS_ADDRESS;
+    }
+
+  if (rv_size <= bpw)
+    {
+      /* Up to one word scalars are returned in R11.  */
+      if (readbuf != NULL)
+	{
+	  ULONGEST tmp;
+
+	  regcache_cooked_read_unsigned (regcache, OR1K_RV_REGNUM, &tmp);
+	  store_unsigned_integer (readbuf, rv_size, byte_order, tmp);
+
+	}
+      if (writebuf != NULL)
+	{
+	  gdb_byte buf[4];
+	  memset (buf, 0, sizeof (buf)); /* Zero pad if < bpw bytes.  */
+
+	  if (BFD_ENDIAN_BIG == byte_order)
+	    memcpy (buf + sizeof (buf) - rv_size, writebuf, rv_size);
+	  else
+	    memcpy (buf, writebuf, rv_size);
+
+	  regcache_cooked_write (regcache, OR1K_RV_REGNUM, buf);
+	}
+    }
+  else
+    {
+      /* 2 word scalars are returned in r11/r12 (with the MS word in r11).  */
+      if (readbuf != NULL)
+	{
+	  ULONGEST tmp_lo;
+	  ULONGEST tmp_hi;
+	  ULONGEST tmp;
+
+	  regcache_cooked_read_unsigned (regcache, OR1K_RV_REGNUM, &tmp_hi);
+	  regcache_cooked_read_unsigned (regcache, OR1K_RV_REGNUM + 1,
+					 &tmp_lo);
+	  tmp = (tmp_hi << (bpw * 8)) | tmp_lo;
+
+	  store_unsigned_integer (readbuf, rv_size, byte_order, tmp);
+	}
+      if (writebuf != NULL)
+	{
+	  gdb_byte buf_lo[4];
+	  gdb_byte buf_hi[4];
+
+	  memset (buf_lo, 0, sizeof (buf_lo)); /* Zero pad if < bpw bytes.  */
+	  memset (buf_hi, 0, sizeof (buf_hi)); /* Zero pad if < bpw bytes.  */
+
+	  /* This is cheating.  We assume that we fit in 2 words exactly, which
+	     wouldn't work if we had (say) a 6-byte scalar type on a big
+	     endian architecture (with the OpenRISC 1000 usually is).  */
+	  memcpy (buf_hi, writebuf, rv_size - bpw);
+	  memcpy (buf_lo, writebuf + bpw, bpw);
+
+	  regcache_cooked_write (regcache, OR1K_RV_REGNUM, buf_hi);
+	  regcache_cooked_write (regcache, OR1K_RV_REGNUM + 1, buf_lo);
+	}
+    }
+
+  return RETURN_VALUE_REGISTER_CONVENTION;
+}
+
+/* OR1K always uses a l.trap instruction for breakpoints.  */
+
+constexpr gdb_byte or1k_break_insn[] = {0x21, 0x00, 0x00, 0x01};
+
+typedef BP_MANIPULATION (or1k_break_insn) or1k_breakpoint;
+
+/* Implement the single_step_through_delay gdbarch method.  */
+
+static int
+or1k_single_step_through_delay (struct gdbarch *gdbarch,
+				struct frame_info *this_frame)
+{
+  ULONGEST val;
+  CORE_ADDR ppc;
+  CORE_ADDR npc;
+  CGEN_FIELDS tmp_fields;
+  const CGEN_INSN *insn;
+  struct regcache *regcache = get_current_regcache ();
+  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+
+  /* Get and the previous and current instruction addresses.  If they are not
+     adjacent, we cannot be in a delay slot.  */
+  regcache_cooked_read_unsigned (regcache, OR1K_PPC_REGNUM, &val);
+  ppc = (CORE_ADDR) val;
+  regcache_cooked_read_unsigned (regcache, OR1K_NPC_REGNUM, &val);
+  npc = (CORE_ADDR) val;
+
+  if (0x4 != (npc - ppc))
+    return 0;
+
+  insn = cgen_lookup_insn (tdep->gdb_cgen_cpu_desc,
+			    NULL,
+			    or1k_fetch_instruction (gdbarch, ppc),
+			    NULL, 32, &tmp_fields, 0);
+
+  /* NULL here would mean the last instruction was not understood by cgen.
+     This should not usually happen, but if does its not a delay slot.  */
+  if (insn == NULL)
+    return 0;
+
+  /* TODO: we should add a delay slot flag to the CGEN_INSN and remove
+     this hard coded test.  */
+  return ((CGEN_INSN_NUM (insn) == OR1K_INSN_L_J)
+	  || (CGEN_INSN_NUM (insn) == OR1K_INSN_L_JAL)
+	  || (CGEN_INSN_NUM (insn) == OR1K_INSN_L_JR)
+	  || (CGEN_INSN_NUM (insn) == OR1K_INSN_L_JALR)
+	  || (CGEN_INSN_NUM (insn) == OR1K_INSN_L_BNF)
+	  || (CGEN_INSN_NUM (insn) == OR1K_INSN_L_BF));
+}
+
+/* Name for or1k general registers.  */
+
+static const char *const or1k_reg_names[OR1K_NUM_REGS] = {
+  /* general purpose registers */
+  "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
+  "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
+  "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
+  "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
+
+  /* previous program counter, next program counter and status register */
+  "ppc", "npc", "sr"
+};
+
+/* Implement the register_name gdbarch method.  */
+
+static const char *
+or1k_register_name (struct gdbarch *gdbarch, int regnum)
+{
+  if (0 <= regnum && regnum < OR1K_NUM_REGS)
+    return or1k_reg_names[regnum];
+  else
+    return NULL;
+}
+
+/* Implement the register_type gdbarch method.  */
+
+static struct type *
+or1k_register_type (struct gdbarch *gdbarch, int regnum)
+{
+  if ((regnum >= 0) && (regnum < OR1K_NUM_REGS))
+    {
+      switch (regnum)
+	{
+	case OR1K_PPC_REGNUM:
+	case OR1K_NPC_REGNUM:
+	  return builtin_type (gdbarch)->builtin_func_ptr; /* Pointer to code */
+
+	case OR1K_SP_REGNUM:
+	case OR1K_FP_REGNUM:
+	  return builtin_type (gdbarch)->builtin_data_ptr; /* Pointer to data */
+
+	default:
+	  return builtin_type (gdbarch)->builtin_uint32; /* Data */
+	}
+    }
+
+  internal_error (__FILE__, __LINE__,
+		  _("or1k_register_type: illegal register number %d"),
+		  regnum);
+}
+
+/* Implement the register_reggroup_p gdbarch method.  */
+
+static int
+or1k_register_reggroup_p (struct gdbarch *gdbarch,
+			  int regnum, struct reggroup *group)
+{
+  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+
+  /* All register group.  */
+  if (group == all_reggroup)
+    return ((regnum >= 0)
+	    && (regnum < OR1K_NUM_REGS)
+	    && (or1k_register_name (gdbarch, regnum)[0] != '\0'));
+
+  /* For now everything except the PC.  */
+  if (group == general_reggroup)
+    return ((regnum >= OR1K_ZERO_REGNUM)
+	    && (regnum < OR1K_MAX_GPR_REGS)
+	    && (regnum != OR1K_PPC_REGNUM) && (regnum != OR1K_NPC_REGNUM));
+
+  if (group == float_reggroup)
+    return 0; /* No float regs */
+
+  if (group == vector_reggroup)
+    return 0; /* No vector regs */
+
+  /* For any that are not handled above.  */
+  return default_register_reggroup_p (gdbarch, regnum, group);
+}
+
+static int
+or1k_is_arg_reg (unsigned int regnum)
+{
+  return (OR1K_FIRST_ARG_REGNUM <= regnum)
+    && (regnum <= OR1K_LAST_ARG_REGNUM);
+}
+
+static int
+or1k_is_callee_saved_reg (unsigned int regnum)
+{
+  return (OR1K_FIRST_SAVED_REGNUM <= regnum) && (0 == regnum % 2);
+}
+
+/* Implement the skip_prologue gdbarch method.  */
+
+static CORE_ADDR
+or1k_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
+{
+  CORE_ADDR start_pc;
+  CORE_ADDR addr;
+  uint32_t inst;
+
+  unsigned int ra, rb, rd; /* for instruction analysis */
+  int simm;
+
+  int frame_size = 0;
+
+  /* Try using SAL first if we have symbolic information available.  This only
+     works for DWARF 2, not STABS.  */
+
+  if (find_pc_partial_function (pc, NULL, &start_pc, NULL))
+    {
+      CORE_ADDR prologue_end = skip_prologue_using_sal (gdbarch, pc);
+
+      if (0 != prologue_end)
+	{
+	  struct symtab_and_line prologue_sal = find_pc_line (start_pc, 0);
+	  struct compunit_symtab *compunit
+	    = SYMTAB_COMPUNIT (prologue_sal.symtab);
+	  const char *debug_format = COMPUNIT_DEBUGFORMAT (compunit);
+
+	  if ((NULL != debug_format)
+	      && (strlen ("dwarf") <= strlen (debug_format))
+	      && (0 == strncasecmp ("dwarf", debug_format, strlen ("dwarf"))))
+	    return (prologue_end > pc) ? prologue_end : pc;
+	}
+    }
+
+  /* Look to see if we can find any of the standard prologue sequence.  All
+     quite difficult, since any or all of it may be missing.  So this is just a
+     best guess!  */
+
+  addr = pc; /* Where we have got to */
+  inst = or1k_fetch_instruction (gdbarch, addr);
+
+  /* Look for the new stack pointer being set up.  */
+  if (or1k_analyse_l_addi (inst, &rd, &ra, &simm)
+      && (OR1K_SP_REGNUM == rd) && (OR1K_SP_REGNUM == ra)
+      && (simm < 0) && (0 == (simm % 4)))
+    {
+      frame_size = -simm;
+      addr += OR1K_INSTLEN;
+      inst = or1k_fetch_instruction (gdbarch, addr);
+    }
+
+  /* Look for the frame pointer being manipulated.  */
+  if (or1k_analyse_l_sw (inst, &simm, &ra, &rb)
+      && (OR1K_SP_REGNUM == ra) && (OR1K_FP_REGNUM == rb)
+      && (simm >= 0) && (0 == (simm % 4)))
+    {
+      addr += OR1K_INSTLEN;
+      inst = or1k_fetch_instruction (gdbarch, addr);
+
+      gdb_assert (or1k_analyse_l_addi (inst, &rd, &ra, &simm)
+		  && (OR1K_FP_REGNUM == rd) && (OR1K_SP_REGNUM == ra)
+		  && (simm == frame_size));
+
+      addr += OR1K_INSTLEN;
+      inst = or1k_fetch_instruction (gdbarch, addr);
+    }
+
+  /* Look for the link register being saved.  */
+  if (or1k_analyse_l_sw (inst, &simm, &ra, &rb)
+      && (OR1K_SP_REGNUM == ra) && (OR1K_LR_REGNUM == rb)
+      && (simm >= 0) && (0 == (simm % 4)))
+    {
+      addr += OR1K_INSTLEN;
+      inst = or1k_fetch_instruction (gdbarch, addr);
+    }
+
+  /* Look for arguments or callee-saved register being saved.  The register
+     must be one of the arguments (r3-r8) or the 10 callee saved registers
+     (r10, r12, r14, r16, r18, r20, r22, r24, r26, r28, r30).  The base
+     register must be the FP (for the args) or the SP (for the callee_saved
+     registers).  */
+  while (1)
+    {
+      if (or1k_analyse_l_sw (inst, &simm, &ra, &rb)
+	  && (((OR1K_FP_REGNUM == ra) && or1k_is_arg_reg (rb))
+	      || ((OR1K_SP_REGNUM == ra) && or1k_is_callee_saved_reg (rb)))
+	  && (0 == (simm % 4)))
+	{
+	  addr += OR1K_INSTLEN;
+	  inst = or1k_fetch_instruction (gdbarch, addr);
+	}
+      else
+	{
+	  /* Nothing else to look for.  We have found the end of the
+	     prologue.  */
+	  return addr;
+	}
+    }
+}
+
+/* Implement the frame_align gdbarch method.  */
+
+static CORE_ADDR
+or1k_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
+{
+  return align_down (sp, OR1K_STACK_ALIGN);
+}
+
+/* Implement the unwind_pc gdbarch method.  */
+
+static CORE_ADDR
+or1k_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
+{
+  CORE_ADDR pc;
+
+  if (frame_debug)
+    fprintf_unfiltered (gdb_stdlog, "or1k_unwind_pc, next_frame=%d\n",
+			frame_relative_level (next_frame));
+
+  pc = frame_unwind_register_unsigned (next_frame, OR1K_NPC_REGNUM);
+
+  if (frame_debug)
+    fprintf_unfiltered (gdb_stdlog, "or1k_unwind_pc, pc=0x%p\n",
+			(void *) pc);
+
+  return pc;
+}
+
+/* Implement the unwind_sp gdbarch method.  */
+
+static CORE_ADDR
+or1k_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
+{
+  CORE_ADDR sp;
+
+  if (frame_debug)
+    fprintf_unfiltered (gdb_stdlog, "or1k_unwind_sp, next_frame=%d\n",
+			frame_relative_level (next_frame));
+
+  sp = frame_unwind_register_unsigned (next_frame, OR1K_SP_REGNUM);
+
+  if (frame_debug)
+    fprintf_unfiltered (gdb_stdlog, "or1k_unwind_sp, sp=0x%p\n",
+			(void *) sp);
+
+  return sp;
+}
+
+/* Implement the push_dummy_code gdbarch method.  */
+
+static CORE_ADDR
+or1k_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp,
+		      CORE_ADDR function, struct value **args, int nargs,
+		      struct type *value_type, CORE_ADDR * real_pc,
+		      CORE_ADDR * bp_addr, struct regcache *regcache)
+{
+  CORE_ADDR bp_slot;
+
+  /* Reserve enough room on the stack for our breakpoint instruction.  */
+  bp_slot = sp - 4;
+  /* Store the address of that breakpoint.  */
+  *bp_addr = bp_slot;
+  /* keeping the stack aligned.  */
+  sp = or1k_frame_align (gdbarch, bp_slot);
+  /* The call starts at the callee's entry point.  */
+  *real_pc = function;
+
+  return sp;
+}
+
+/* Implement the push_dummy_call gdbarch method.  */
+
+static CORE_ADDR
+or1k_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
+		      struct regcache *regcache, CORE_ADDR bp_addr,
+		      int nargs, struct value **args, CORE_ADDR sp,
+		      int struct_return, CORE_ADDR struct_addr)
+{
+
+  int argreg;
+  int argnum;
+  int first_stack_arg;
+  int stack_offset = 0;
+  int heap_offset = 0;
+  CORE_ADDR heap_sp = sp - 128;
+  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
+  int bpa = (gdbarch_tdep (gdbarch))->bytes_per_address;
+  int bpw = (gdbarch_tdep (gdbarch))->bytes_per_word;
+  struct type *func_type = value_type (function);
+
+  /* Return address */
+  regcache_cooked_write_unsigned (regcache, OR1K_LR_REGNUM, bp_addr);
+
+  /* Register for the next argument.  */
+  argreg = OR1K_FIRST_ARG_REGNUM;
+
+  /* Location for a returned structure.  This is passed as a silent first
+     argument.  */
+  if (struct_return)
+    {
+      regcache_cooked_write_unsigned (regcache, OR1K_FIRST_ARG_REGNUM,
+				      struct_addr);
+      argreg++;
+    }
+
+  /* Put as many args as possible in registers.  */
+  for (argnum = 0; argnum < nargs; argnum++)
+    {
+      const gdb_byte *val;
+      gdb_byte valbuf[sizeof (ULONGEST)];
+
+      struct value *arg = args[argnum];
+      struct type *arg_type = check_typedef (value_type (arg));
+      int len = arg_type->length;
+      enum type_code typecode = arg_type->main_type->code;
+
+      if (TYPE_VARARGS (func_type) && argnum >= TYPE_NFIELDS (func_type))
+	break; /* end or regular args, varargs go to stack.  */
+
+      /* Extract the value, either a reference or the data.  */
+      if ((TYPE_CODE_STRUCT == typecode) || (TYPE_CODE_UNION == typecode)
+	  || (len > bpw * 2))
+	{
+	  CORE_ADDR valaddr = value_address (arg);
+
+	  /* If the arg is fabricated (i.e. 3*i, instead of i) valaddr is
+	     undefined.  */
+	  if (valaddr == 0)
+	    {
+	      /* The argument needs to be copied into the target space.  Since
+	         the bottom of the stack is reserved for function arguments
+	         we store this at the these at the top growing down.  */
+	      heap_offset += align_up (len, bpw);
+	      valaddr = heap_sp + heap_offset;
+
+	      write_memory (valaddr, value_contents (arg), len);
+	    }
+
+	  /* The ABI passes all structures by reference, so get its address.  */
+	  store_unsigned_integer (valbuf, bpa, byte_order, valaddr);
+	  len = bpa;
+	  val = valbuf;
+	}
+      else
+	{
+	  /* Everything else, we just get the value.  */
+	  val = value_contents (arg);
+	}
+
+      /* Stick the value in a register.  */
+      if (len > bpw)
+	{
+	  /* Big scalars use two registers, but need NOT be pair aligned.  */
+
+	  if (argreg <= (OR1K_LAST_ARG_REGNUM - 1))
+	    {
+	      ULONGEST regval =	extract_unsigned_integer (val, len, byte_order);
+
+	      unsigned int bits_per_word = bpw * 8;
+	      ULONGEST mask = (((ULONGEST) 1) << bits_per_word) - 1;
+	      ULONGEST lo = regval & mask;
+	      ULONGEST hi = regval >> bits_per_word;
+
+	      regcache_cooked_write_unsigned (regcache, argreg, hi);
+	      regcache_cooked_write_unsigned (regcache, argreg + 1, lo);
+	      argreg += 2;
+	    }
+	  else
+	    {
+	      /* Run out of regs */
+	      break;
+	    }
+	}
+      else if (argreg <= OR1K_LAST_ARG_REGNUM)
+	{
+	  /* Smaller scalars fit in a single register.  */
+	  regcache_cooked_write_unsigned
+	    (regcache, argreg, extract_unsigned_integer (val, len, byte_order));
+	  argreg++;
+	}
+      else
+	{
+	  /* Ran out of regs.  */
+	  break;
+	}
+    }
+
+  first_stack_arg = argnum;
+
+  /* If we get here with argnum < nargs, then arguments remain to be placed on
+     the stack.  This is tricky, since they must be pushed in reverse order and
+     the stack in the end must be aligned.  The only solution is to do it in
+     two stages, the first to compute the stack size, the second to save the
+     args.  */
+
+  for (argnum = first_stack_arg; argnum < nargs; argnum++)
+    {
+      struct value *arg = args[argnum];
+      struct type *arg_type = check_typedef (value_type (arg));
+      int len = arg_type->length;
+      enum type_code typecode = arg_type->main_type->code;
+
+      if ((TYPE_CODE_STRUCT == typecode) || (TYPE_CODE_UNION == typecode)
+	  || (len > bpw * 2))
+	{
+	  /* Structures are passed as addresses.  */
+	  sp -= bpa;
+	}
+      else
+	{
+	  /* Big scalars use more than one word.  Code here allows for future
+	     quad-word entities (e.g. long double.)  */
+	  sp -= align_up (len, bpw);
+	}
+
+      /* Ensure our dummy heap doesn't touch the stack, this could only happen
+         if we have many arguments including fabricated arguments.  */
+      gdb_assert (heap_offset == 0 || ((heap_sp + heap_offset) < sp));
+    }
+
+  sp = gdbarch_frame_align (gdbarch, sp);
+  stack_offset = 0;
+
+  /* Push the remaining args on the stack.  */
+  for (argnum = first_stack_arg; argnum < nargs; argnum++)
+    {
+      const gdb_byte *val;
+      gdb_byte valbuf[sizeof (ULONGEST)];
+
+      struct value *arg = args[argnum];
+      struct type *arg_type = check_typedef (value_type (arg));
+      int len = arg_type->length;
+      enum type_code typecode = arg_type->main_type->code;
+      /* The EABI passes structures that do not fit in a register by
+         reference.  In all other cases, pass the structure by value.  */
+      if ((TYPE_CODE_STRUCT == typecode) || (TYPE_CODE_UNION == typecode)
+	  || (len > bpw * 2))
+	{
+	  store_unsigned_integer (valbuf, bpa, byte_order,
+				  value_address (arg));
+	  len = bpa;
+	  val = valbuf;
+	}
+      else
+	val = value_contents (arg);
+
+      while (len > 0)
+	{
+	  int partial_len = (len < bpw ? len : bpw);
+
+	  write_memory (sp + stack_offset, val, partial_len);
+	  stack_offset += align_up (partial_len, bpw);
+	  len -= partial_len;
+	  val += partial_len;
+	}
+    }
+
+  /* Save the updated stack pointer.  */
+  regcache_cooked_write_unsigned (regcache, OR1K_SP_REGNUM, sp);
+
+  if (heap_offset > 0)
+    sp = heap_sp;
+
+  return sp;
+}
+
+/* Implement the dummy_id gdbarch method.  */
+
+static struct frame_id
+or1k_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
+{
+  return frame_id_build (get_frame_sp (this_frame),
+			 get_frame_pc (this_frame));
+}
+
+
+/* Support functions for frame handling.  */
+
+/* Initialize a prologue cache
+
+   We build a cache, saying where registers of the PREV frame can be found
+   from the data so far set up in this THIS.
+
+   We also compute a unique ID for this frame, based on the function start
+   address and the stack pointer (as it will be, even if it has yet to be
+   computed.
+
+   STACK FORMAT
+   ============
+
+   The OR1K has a falling stack frame and a simple prolog.  The Stack pointer
+   is R1 and the frame pointer R2.  The frame base is therefore the address
+   held in R2 and the stack pointer (R1) is the frame base of the NEXT frame.
+
+   l.addi  r1,r1,-frame_size	# SP now points to end of new stack frame
+
+   The stack pointer may not be set up in a frameless function (e.g. a simple
+   leaf function).
+
+   l.sw    fp_loc(r1),r2        # old FP saved in new stack frame
+   l.addi  r2,r1,frame_size     # FP now points to base of new stack frame
+
+   The frame pointer is not necessarily saved right at the end of the stack
+   frame - OR1K saves enough space for any args to called functions right at
+   the end (this is a difference from the Architecture Manual).
+
+   l.sw    lr_loc(r1),r9        # Link (return) address
+
+   The link register is usally saved at fp_loc - 4.  It may not be saved at all
+   in a leaf function.
+
+   l.sw    reg_loc(r1),ry       # Save any callee saved regs
+
+   The offsets x for the callee saved registers generally (always?) rise in
+   increments of 4, starting at fp_loc + 4.  If the frame pointer is omitted
+   (an option to GCC), then it may not be saved at all.  There may be no callee
+   saved registers.
+
+   So in summary none of this may be present.  However what is present seems
+   always to follow this fixed order, and occur before any substantive code
+   (it is possible for GCC to have more flexible scheduling of the prologue,
+   but this does not seem to occur for OR1K).
+
+   ANALYSIS
+   ========
+
+   This prolog is used, even for -O3 with GCC.
+
+   All this analysis must allow for the possibility that the PC is in the
+   middle of the prologue.  Data in the cache should only be set up insofar as
+   it has been computed.
+
+   HOWEVER.  The frame_id must be created with the SP *as it will be* at the
+   end of the Prologue.  Otherwise a recursive call, checking the frame with
+   the PC at the start address will end up with the same frame_id as the
+   caller.
+
+   A suite of "helper" routines are used, allowing reuse for
+   or1k_skip_prologue().
+
+   Reportedly, this is only valid for frames less than 0x7fff in size.  */
+
+static struct trad_frame_cache *
+or1k_frame_cache (struct frame_info *this_frame, void **prologue_cache)
+{
+  struct gdbarch *gdbarch;
+  struct trad_frame_cache *info;
+
+  CORE_ADDR this_pc;
+  CORE_ADDR this_sp;
+  CORE_ADDR this_sp_for_id;
+  int frame_size = 0;
+
+  CORE_ADDR start_addr;
+  CORE_ADDR end_addr;
+
+  if (frame_debug)
+    fprintf_unfiltered (gdb_stdlog,
+			"or1k_frame_cache, prologue_cache = 0x%p\n",
+			*prologue_cache);
+
+  /* Nothing to do if we already have this info.  */
+  if (NULL != *prologue_cache)
+    return (struct trad_frame_cache *) *prologue_cache;
+
+  /* Get a new prologue cache and populate it with default values.  */
+  info = trad_frame_cache_zalloc (this_frame);
+  *prologue_cache = info;
+
+  /* Find the start address of THIS function (which is a NORMAL frame, even if
+     the NEXT frame is the sentinel frame) and the end of its prologue.  */
+  this_pc = get_frame_pc (this_frame);
+  find_pc_partial_function (this_pc, NULL, &start_addr, NULL);
+
+  /* Get the stack pointer if we have one (if there's no process executing yet
+     we won't have a frame.  */
+  this_sp = (NULL == this_frame) ? 0 :
+    get_frame_register_unsigned (this_frame, OR1K_SP_REGNUM);
+
+  /* Return early if GDB couldn't find the function.  */
+  if (start_addr == 0)
+    {
+      if (frame_debug)
+	fprintf_unfiltered (gdb_stdlog, "  couldn't find function\n");
+
+      /* JPB: 28-Apr-11.  This is a temporary patch, to get round GDB crashing
+         right at the beginning.  Build the frame ID as best we can.  */
+      trad_frame_set_id (info, frame_id_build (this_sp, this_pc));
+
+      return info;
+    }
+
+  /* The default frame base of THIS frame (for ID purposes only - frame base
+     is an overloaded term) is its stack pointer.  For now we use the value of
+     the SP register in THIS frame.  However if the PC is in the prologue of
+     THIS frame, before the SP has been set up, then the value will actually
+     be that of the PREV frame, and we'll need to adjust it later.  */
+  trad_frame_set_this_base (info, this_sp);
+  this_sp_for_id = this_sp;
+
+  /* The default is to find the PC of the PREVIOUS frame in the link register
+     of this frame.  This may be changed if we find the link register was saved
+     on the stack.  */
+  trad_frame_set_reg_realreg (info, OR1K_NPC_REGNUM, OR1K_LR_REGNUM);
+
+  /* We should only examine code that is in the prologue.  This is all code up
+     to (but not including) end_addr.  We should only populate the cache while
+     the address is up to (but not including) the PC or end_addr, whichever is
+     first.  */
+  gdbarch = get_frame_arch (this_frame);
+  end_addr = or1k_skip_prologue (gdbarch, start_addr);
+
+  /* All the following analysis only occurs if we are in the prologue and have
+     executed the code.  Check we have a sane prologue size, and if zero we
+     are frameless and can give up here.  */
+  if (end_addr < start_addr)
+    throw_quit ("end addr 0x%08x is less than start addr 0x%08x\n",
+		(unsigned int) end_addr, (unsigned int) start_addr);
+
+  if (end_addr == start_addr)
+    frame_size = 0;
+  else
+    {
+      /* We have a frame.  Look for the various components.  */
+      CORE_ADDR addr = start_addr; /* Where we have got to */
+      uint32_t inst = or1k_fetch_instruction (gdbarch, addr);
+
+      unsigned int ra, rb, rd; /* for instruction analysis */
+      int simm;
+
+      /* Look for the new stack pointer being set up.  */
+      if (or1k_analyse_l_addi (inst, &rd, &ra, &simm)
+	  && (OR1K_SP_REGNUM == rd) && (OR1K_SP_REGNUM == ra)
+	  && (simm < 0) && (0 == (simm % 4)))
+	{
+	  frame_size = -simm;
+	  addr += OR1K_INSTLEN;
+	  inst = or1k_fetch_instruction (gdbarch, addr);
+
+	  /* If the PC has not actually got to this point, then the frame base
+	     will be wrong, and we adjust it.
+
+	     If we are past this point, then we need to populate the stack
+	     accordingly.  */
+	  if (this_pc <= addr)
+	    {
+	      /* Only do if executing.  */
+	      if (0 != this_sp)
+		{
+		  this_sp_for_id = this_sp + frame_size;
+		  trad_frame_set_this_base (info, this_sp_for_id);
+		}
+	    }
+	  else
+	    {
+	      /* We are past this point, so the stack pointer of the PREV
+	         frame is frame_size greater than the stack pointer of THIS
+	         frame.  */
+	      trad_frame_set_reg_value (info, OR1K_SP_REGNUM,
+					this_sp + frame_size);
+	    }
+	}
+
+      /* From now on we are only populating the cache, so we stop once we get
+         to either the end OR the current PC.  */
+      end_addr = (this_pc < end_addr) ? this_pc : end_addr;
+
+      /* Look for the frame pointer being manipulated.  */
+      if ((addr < end_addr)
+	  && or1k_analyse_l_sw (inst, &simm, &ra, &rb)
+	  && (OR1K_SP_REGNUM == ra) && (OR1K_FP_REGNUM == rb)
+	  && (simm >= 0) && (0 == (simm % 4)))
+	{
+	  addr += OR1K_INSTLEN;
+	  inst = or1k_fetch_instruction (gdbarch, addr);
+
+	  /* At this stage, we can find the frame pointer of the PREVIOUS
+	     frame on the stack of the current frame.  */
+	  trad_frame_set_reg_addr (info, OR1K_FP_REGNUM, this_sp + simm);
+
+	  /* Look for the new frame pointer being set up.  */
+	  if ((addr < end_addr)
+	      && or1k_analyse_l_addi (inst, &rd, &ra, &simm)
+	      && (OR1K_FP_REGNUM == rd) && (OR1K_SP_REGNUM == ra)
+	      && (simm == frame_size))
+	    {
+	      addr += OR1K_INSTLEN;
+	      inst = or1k_fetch_instruction (gdbarch, addr);
+
+	      /* If we have got this far, the stack pointer of the PREVIOUS
+	         frame is the frame pointer of THIS frame.  */
+	      trad_frame_set_reg_realreg (info, OR1K_SP_REGNUM,
+					  OR1K_FP_REGNUM);
+	    }
+	}
+
+      /* Look for the link register being saved.  */
+      if ((addr < end_addr)
+	  && or1k_analyse_l_sw (inst, &simm, &ra, &rb)
+	  && (OR1K_SP_REGNUM == ra) && (OR1K_LR_REGNUM == rb)
+	  && (simm >= 0) && (0 == (simm % 4)))
+	{
+	  addr += OR1K_INSTLEN;
+	  inst = or1k_fetch_instruction (gdbarch, addr);
+
+	  /* If the link register is saved in the THIS frame, it holds the
+	     value of the PC in the PREVIOUS frame.  This overwrites the
+	     previous information about finding the PC in the link
+	     register.  */
+	  trad_frame_set_reg_addr (info, OR1K_NPC_REGNUM, this_sp + simm);
+	}
+
+      /* Look for arguments or callee-saved register being saved.  The register
+         must be one of the arguments (r3-r8) or the 10 callee saved registers
+         (r10, r12, r14, r16, r18, r20, r22, r24, r26, r28, r30).  The base
+         register must be the FP (for the args) or the SP (for the
+         callee_saved registers).  */
+      while (addr < end_addr)
+	{
+	  if (or1k_analyse_l_sw (inst, &simm, &ra, &rb)
+	      && (((OR1K_FP_REGNUM == ra) && or1k_is_arg_reg (rb))
+		  || ((OR1K_SP_REGNUM == ra)
+		      && or1k_is_callee_saved_reg (rb))) && (0 == (simm % 4)))
+	    {
+	      addr += OR1K_INSTLEN;
+	      inst = or1k_fetch_instruction (gdbarch, addr);
+
+	      /* The register in the PREVIOUS frame can be found at this
+	         location in THIS frame.  */
+	      trad_frame_set_reg_addr (info, rb, this_sp + simm);
+	    }
+	  else
+	    break; /* Not a register save instruction.  */
+	}
+    }
+
+  /* Build the frame ID */
+  trad_frame_set_id (info, frame_id_build (this_sp_for_id, start_addr));
+
+  if (frame_debug)
+    {
+      fprintf_unfiltered (gdb_stdlog, "  this_sp_for_id = 0x%p\n",
+			  (void *) this_sp_for_id);
+      fprintf_unfiltered (gdb_stdlog, "  start_addr     = 0x%p\n",
+			  (void *) start_addr);
+    }
+
+  return info;
+}
+
+/* Implement the this_id function for the stub unwinder.  */
+
+static void
+or1k_frame_this_id (struct frame_info *this_frame,
+		    void **prologue_cache, struct frame_id *this_id)
+{
+  struct trad_frame_cache *info = or1k_frame_cache (this_frame,
+						    prologue_cache);
+
+  trad_frame_get_id (info, this_id);
+}
+
+/* Implement the prev_register function for the stub unwinder.  */
+
+static struct value *
+or1k_frame_prev_register (struct frame_info *this_frame,
+			  void **prologue_cache, int regnum)
+{
+  struct trad_frame_cache *info = or1k_frame_cache (this_frame,
+						    prologue_cache);
+
+  return trad_frame_get_register (info, this_frame, regnum);
+}
+
+/* Data structures for the normal prologue-analysis-based unwinder.  */
+
+static const struct frame_unwind or1k_frame_unwind = {
+  .type = NORMAL_FRAME,
+  .stop_reason = default_frame_unwind_stop_reason,
+  .this_id = or1k_frame_this_id,
+  .prev_register = or1k_frame_prev_register,
+  .unwind_data = NULL,
+  .sniffer = default_frame_sniffer,
+  .dealloc_cache = NULL,
+  .prev_arch = NULL
+};
+
+/* Architecture initialization for OpenRISC 1000.  */
+
+static struct gdbarch *
+or1k_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
+{
+  static struct frame_base or1k_frame_base;
+  struct gdbarch *gdbarch;
+  struct gdbarch_tdep *tdep;
+  const struct bfd_arch_info *binfo;
+  struct tdesc_arch_data *tdesc_data = NULL;
+
+  int i;
+  int reg_index = 0;
+  int retval;
+  int group;
+
+  /* Find a candidate among the list of pre-declared architectures.  */
+  arches = gdbarch_list_lookup_by_info (arches, &info);
+  if (NULL != arches)
+    return arches->gdbarch;
+
+  /* None found, create a new architecture from the information
+     provided.  Can't initialize all the target dependencies until we actually
+     know which target we are talking to, but put in some defaults for now.  */
+  binfo = info.bfd_arch_info;
+  tdep = XCNEW (struct gdbarch_tdep);
+  tdep->bytes_per_word = binfo->bits_per_word / binfo->bits_per_byte;
+  tdep->bytes_per_address = binfo->bits_per_address / binfo->bits_per_byte;
+  gdbarch = gdbarch_alloc (&info, tdep);
+
+  /* Target data types */
+  set_gdbarch_short_bit (gdbarch, 16);
+  set_gdbarch_int_bit (gdbarch, 32);
+  set_gdbarch_long_bit (gdbarch, 32);
+  set_gdbarch_long_long_bit (gdbarch, 64);
+  set_gdbarch_float_bit (gdbarch, 32);
+  set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
+  set_gdbarch_double_bit (gdbarch, 64);
+  set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
+  set_gdbarch_long_double_bit (gdbarch, 64);
+  set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
+  set_gdbarch_ptr_bit (gdbarch, binfo->bits_per_address);
+  set_gdbarch_addr_bit (gdbarch, binfo->bits_per_address);
+  set_gdbarch_char_signed (gdbarch, 1);
+
+  /* Information about the target architecture */
+  set_gdbarch_return_value (gdbarch, or1k_return_value);
+  set_gdbarch_breakpoint_kind_from_pc (gdbarch, or1k_breakpoint::kind_from_pc);
+  set_gdbarch_sw_breakpoint_from_kind (gdbarch, or1k_breakpoint::bp_from_kind);
+  set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
+
+  set_gdbarch_print_insn (gdbarch, print_insn_or1k);
+
+  /* Register architecture */
+  set_gdbarch_num_regs (gdbarch, OR1K_NUM_REGS);
+  set_gdbarch_num_pseudo_regs (gdbarch, OR1K_NUM_PSEUDO_REGS);
+  set_gdbarch_sp_regnum (gdbarch, OR1K_SP_REGNUM);
+  set_gdbarch_pc_regnum (gdbarch, OR1K_NPC_REGNUM);
+  set_gdbarch_ps_regnum (gdbarch, OR1K_SR_REGNUM);
+  set_gdbarch_deprecated_fp_regnum (gdbarch, OR1K_FP_REGNUM);
+
+  /* Functions to supply register information */
+  set_gdbarch_register_name (gdbarch, or1k_register_name);
+  set_gdbarch_register_type (gdbarch, or1k_register_type);
+  set_gdbarch_register_reggroup_p (gdbarch, or1k_register_reggroup_p);
+
+  /* Functions to analyse frames */
+  set_gdbarch_skip_prologue (gdbarch, or1k_skip_prologue);
+  set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
+  set_gdbarch_frame_align (gdbarch, or1k_frame_align);
+  set_gdbarch_frame_red_zone_size (gdbarch, OR1K_FRAME_RED_ZONE_SIZE);
+
+  /* Functions to access frame data */
+  set_gdbarch_unwind_pc (gdbarch, or1k_unwind_pc);
+  set_gdbarch_unwind_sp (gdbarch, or1k_unwind_sp);
+
+  /* Functions handling dummy frames */
+  set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
+  set_gdbarch_push_dummy_code (gdbarch, or1k_push_dummy_code);
+  set_gdbarch_push_dummy_call (gdbarch, or1k_push_dummy_call);
+  set_gdbarch_dummy_id (gdbarch, or1k_dummy_id);
+
+  /* Frame unwinders.  Use DWARF debug info if available, otherwise use our
+     own unwinder.  */
+  dwarf2_append_unwinders (gdbarch);
+  frame_unwind_append_unwinder (gdbarch, &or1k_frame_unwind);
+
+  /* Get a CGEN CPU descriptor for this architecture.  */
+  {
+
+    const char *mach_name = binfo->printable_name;
+    enum cgen_endian endian = (info.byte_order == BFD_ENDIAN_BIG
+			       ? CGEN_ENDIAN_BIG : CGEN_ENDIAN_LITTLE);
+
+    tdep->gdb_cgen_cpu_desc =
+      or1k_cgen_cpu_open (CGEN_CPU_OPEN_BFDMACH, mach_name,
+			  CGEN_CPU_OPEN_ENDIAN, endian, CGEN_CPU_OPEN_END);
+
+    or1k_cgen_init_asm (tdep->gdb_cgen_cpu_desc);
+  }
+
+  /* If this mach has a delay slot.  */
+  if (binfo->mach == bfd_mach_or1k)
+    set_gdbarch_single_step_through_delay (gdbarch,
+					   or1k_single_step_through_delay);
+
+  /* Check any target description for validity.  */
+  if (tdesc_has_registers (info.target_desc))
+    {
+      const struct tdesc_feature *feature;
+      int valid_p;
+
+      feature = tdesc_find_feature (info.target_desc, "org.gnu.gdb.or1k.group0");
+      if (feature == NULL)
+        return NULL;
+
+      tdesc_data = tdesc_data_alloc ();
+
+      valid_p = 1;
+
+      for (i = 0; i < OR1K_NUM_REGS; i++)
+        valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
+                                            or1k_reg_names[i]);
+
+      if (!valid_p)
+        {
+          tdesc_data_cleanup (tdesc_data);
+          return NULL;
+        }
+    }
+
+  if (tdesc_data)
+    {
+      tdesc_use_registers (gdbarch, info.target_desc, tdesc_data);
+
+      /* Target descriptions may extend into the following groups.  */
+      reggroup_add (gdbarch, general_reggroup);
+      reggroup_add (gdbarch, system_reggroup);
+      reggroup_add (gdbarch, float_reggroup);
+      reggroup_add (gdbarch, vector_reggroup);
+      reggroup_add (gdbarch, reggroup_new ("immu", USER_REGGROUP));
+      reggroup_add (gdbarch, reggroup_new ("dmmu", USER_REGGROUP));
+      reggroup_add (gdbarch, reggroup_new ("icache", USER_REGGROUP));
+      reggroup_add (gdbarch, reggroup_new ("dcache", USER_REGGROUP));
+      reggroup_add (gdbarch, reggroup_new ("pic", USER_REGGROUP));
+      reggroup_add (gdbarch, reggroup_new ("timer", USER_REGGROUP));
+      reggroup_add (gdbarch, reggroup_new ("power", USER_REGGROUP));
+      reggroup_add (gdbarch, reggroup_new ("perf", USER_REGGROUP));
+      reggroup_add (gdbarch, reggroup_new ("mac", USER_REGGROUP));
+      reggroup_add (gdbarch, reggroup_new ("debug", USER_REGGROUP));
+      reggroup_add (gdbarch, all_reggroup);
+      reggroup_add (gdbarch, save_reggroup);
+      reggroup_add (gdbarch, restore_reggroup);
+    }
+
+  return gdbarch;
+}
+
+/* Dump the target specific data for this architecture.  */
+
+static void
+or1k_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
+{
+  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
+
+  if (NULL == tdep)
+    return; /* Nothing to report */
+
+  fprintf_unfiltered (file, "or1k_dump_tdep: %d bytes per word\n",
+		      tdep->bytes_per_word);
+  fprintf_unfiltered (file, "or1k_dump_tdep: %d bytes per address\n",
+		      tdep->bytes_per_address);
+}
+
+
+extern initialize_file_ftype _initialize_or1k_tdep; /* -Wmissing-prototypes */
+
+void
+_initialize_or1k_tdep (void)
+{
+  /* Register this architecture.  */
+  gdbarch_register (bfd_arch_or1k, or1k_gdbarch_init, or1k_dump_tdep);
+
+  /* Tell remote stub that we support XML target description.  */
+  register_remote_support_xml ("or1k");
+}
diff --git a/gdb/or1k-tdep.h b/gdb/or1k-tdep.h
new file mode 100644
index 0000000..edcad88
--- /dev/null
+++ b/gdb/or1k-tdep.h
@@ -0,0 +1,56 @@ 
+/* Definitions to target GDB to OpenRISC 1000 32-bit targets.
+   Copyright (C) 2008-2017 Free Software Foundation, Inc.
+
+   This file is part of GDB.
+
+   This program is free software; you can redistribute it and/or modify it
+   under the terms of the GNU General Public License as published by the Free
+   Software Foundation; either version 3 of the License, or (at your option)
+   any later version.
+
+   This program is distributed in the hope that it will be useful, but WITHOUT
+   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
+   more details.
+
+   You should have received a copy of the GNU General Public License along
+   With this program.  If not, see <http://www.gnu.org/licenses/>.  */
+
+
+#ifndef OR1K_TDEP__H
+#define OR1K_TDEP__H
+
+#ifndef TARGET_OR1K
+#define TARGET_OR1K
+#endif
+
+#include "opcodes/or1k-desc.h"
+#include "opcodes/or1k-opc.h"
+
+/* General Purpose Registers */
+#define OR1K_ZERO_REGNUM          0
+#define OR1K_SP_REGNUM            1
+#define OR1K_FP_REGNUM            2
+#define OR1K_FIRST_ARG_REGNUM     3
+#define OR1K_LAST_ARG_REGNUM      8
+#define OR1K_LR_REGNUM            9
+#define OR1K_FIRST_SAVED_REGNUM  10
+#define OR1K_RV_REGNUM           11
+#define OR1K_PPC_REGNUM          (OR1K_MAX_GPR_REGS + 0)
+#define OR1K_NPC_REGNUM          (OR1K_MAX_GPR_REGS + 1)
+#define OR1K_SR_REGNUM           (OR1K_MAX_GPR_REGS + 2)
+
+/* Properties of the architecture. GDB mapping of registers is all the GPRs
+   and SPRs followed by the PPC, NPC and SR at the end. Red zone is the area
+   past the end of the stack reserved for exception handlers etc.  */
+
+#define OR1K_MAX_GPR_REGS            32
+#define OR1K_NUM_PSEUDO_REGS         0
+#define OR1K_NUM_REGS               (OR1K_MAX_GPR_REGS + 3)
+#define OR1K_STACK_ALIGN             4
+#define OR1K_INSTLEN                 4
+#define OR1K_INSTBITLEN             (OR1K_INSTLEN * 8)
+#define OR1K_NUM_TAP_RECORDS         8
+#define OR1K_FRAME_RED_ZONE_SIZE     2536
+
+#endif /* OR1K_TDEP__H */